首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
A simple and rugged sheathless interface for capillary electrophoresis/electrospray ionization-mass spectrometry (CE/ESI-MS) was designed using common laboratory tools and chemicals. The interface uses a small platinum (Pt) wire that is inserted into the CE capillary through a small hole near the terminus. The position of the wire inside the CE capillary and within the buffer solution is analogous to standard CE separation operations where the terminus of the CE capillary is placed inside a buffer reservoir along with a grounded platinum electrode. By combining the use of the in-capillary electrode interface with sharpening of the fused silica tip of the CE capillary outlet, a stable electrospray current was maintained for an extended period of time. The design was successfully applied to CE/ESI-MS separations and analysis of mixtures of peptides and proteins. A detection limit of approximately 4 femtomole (S/N = 3) was achieved for detection of myoglobin utilizing a 75-µm-i.d. aminopropylsilane treated CE column and using a wide scan range of 550–1300 Da. The advantages of this new design include (1) a stable CE and ESI current, (2) durability, (3) a reduced risk of sparking between the capillary tip and the inlet of the mass spectrometer, (4) lack of any dead volume, and (5) facile fabrication with common tools and chemicals.  相似文献   

2.
A high voltage RF oscillator circuit has been designed and constructed for driving multipole ion guides. The circuit is tunable from 500 kHz to 1.5 MHz by changing a capacitor and provides 0–1000 Vp-p that is controlled by a 0–10 V input using a negative feedback circuit. This inexpensive circuit uses a set of high voltage transistors oscillating in tandem and does not require tuning of the resonance drive frequency as the oscillator automatically resonates at the (LC)−1/2 frequency. Matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS) mass spectra were acquired using this tunable RF oscillator circuit to allow transmission of protein ions in the 8.5–39 kDa range through the quadrupole ion guide from the ion source to the mass analyzer.  相似文献   

3.
A heated capillary inlet for an electrospray ionization mass spectrometry (ESI-MS) interface was compared with shorter versions of the inlet to determine the effects on transmission and ionization efficiencies for low-flow (nano) electrosprays. Five different inlet lengths were studied, ranging from 6.4 to 1.3 cm. As expected, the electrospray current transmission efficiency increased with decreasing capillary length due to reduced losses to the inside walls of the capillary. This increase in transmission efficiency with shorter inlets was coupled with reduced desolvation of electrosprayed droplets. Surprisingly, as the inlet length was decreased, some analytes showed little or no increase in sensitivity, while others showed as much as a 15-fold gain. The variation was shown to be at least partially correlated with analyte mobilities, with the largest gains observed for higher mobility species, but also affected by solution conductivity, flow rate, and inlet temperature. Strategies for maximizing sensitivity while minimizing biases in ion transmission through the heated capillary interface are proposed.  相似文献   

4.
Gas and ion transport in the capillary-skimmer subatmospheric interface of a mass spectrometer, which is typically utilized to separate unevaporated micro-droplets from ions, was studied numerically using a two-step approach spanning multiple gas dynamic regimes. The gas flow in the heated capillary and in the interface was determined by solving numerically the Navier-Stokes equation. The capillary-to-skimmer gas/ion flow was modeled through the solution of the full Boltzmann equation with a force term. The force term, together with calculated aerodynamic drag, determined the ion motion in the gap between the capillary and skimmer. Three-dimensional modeling of the impact of the voltage applied to the Einzel lens on the transmission of doubly charged peptide ions through the skimmer orifice was compared with experimental data obtained in the companion study. Good agreement between measured and computed signals was observed. The numerical results indicate that as many as 75% of the ions that exit from the capillary are lost on the conical surface of the skimmer or capillary outer surface because of the electrostatic force and plume divergence.
Figure
?  相似文献   

5.
Zhao SS  Zhong X  Chen DD 《Electrophoresis》2012,33(8):1322-1330
An atmospheric ion lens incorporated into an electrospray ion source for capillary electrophoresis-mass spectrometry (CE-MS) is found to extend the stable operational regions for both flow rates and electrospray ionization (ESI) voltages. The stable operating conditions for the ESI source with and without the ion lens were characterized. The results showed that the stable operation region was widest when the voltage difference between the sprayer and the ion lens ranges from 2.6 to 2.8 kV, and under these condition, the CE-MS interface can be adapted to a broader range of electroosmotic and modifier flow rates. Modeling of the electric field in the electrospray ion source with the ion lens suggests that the extension of the stable region is attributed to the flatter equipotential surfaces around the sprayer tip and higher electric field strengths in the rest of the interface region.  相似文献   

6.
A new interface plate was employed in microspray ionization mass spectrometry (μESI-MS) to improve ion transmission from the sprayer into the sampling nozzle of the mass spectrometer at atmospheric pressure. Using a time-of-flight mass spectrometer (TOFMS), a fivefold increase in ion intensity and a sevenfold reduction in method detection limit were observed. The interface plate attenuated the dependence of the ion intensity on the sprayer position. Even when the distance between the sprayer tip and sampling nozzle was 15.0 mm, ion signals were still stronger than when the sprayer tip was positioned 3.0 mm in front of the sampling nozzle with the original interface plate. This enhancement in the performance of μESI-MS was due to the improved shapes of the equipotential lines near the sprayer tip and the long desolvation distance between the sprayer and the sampling nozzle of the MS.  相似文献   

7.
Le Gac S  Arscott S  Rolando C 《Electrophoresis》2003,24(21):3640-3647
We report on the fabrication and testing of planar nib-like structures for nanoelectrospray ionization-mass spectrometry (nanoESI-MS) applications. The micro-nib structures were fabricated on silicon substrates using the negative photoresist SU-8; they include capillary slots with widths of 8 and 16 microm. A suitable wafer cleaving step made the nib-like structures overhang the edge of a silicon substrate to provide a robust interface for nanoESI-MS applications; this freeing of the nib tip from the wafer surface created a point-like structure that is essential to establish an electrospray. The micro-nib sources were successfully tested on an LCQ Deca XP+ ion trap mass spectrometer using peptide samples at concentrations down to 1 microM. The high voltage was applied using a platinum wire inserted in the sample reservoir upstream to the capillary slot. A Taylor cone was clearly seen at the nib tip. The micro-nibs performed well at voltages as low as 0.8 kV; such performances are state-of-the-art with respect to current micromachined ESI-MS interfaces and are conditions comparable to those used for standard emitter tips. In addition, we clearly observed the influence of the micro-nib slot width on the ionization performances: the narrower the slot, the better the performances.  相似文献   

8.
A novel Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer has been developed for improved biomolecule analysis. A flared metal capillary and an electrodynamic ion funnel were installed in the source region of the instrument for improved ion transmission. The transfer quadrupole is divided into 19 segments, with the capacity for independent control of DC voltage biases for each segment. Restrained ion population transfer (RIPT) is used to transfer ions from the ion accumulation region to the ICR cell. The RIPT ion guide reduces mass discrimination that occurs as a result of time-of-flight effects associated with gated trapping. Increasing the number of applied DC bias voltages from 8 to 18 increases the number of ions that are effectively trapped in the ICR cell. The RIPT ion guide with a novel voltage profile applied during ion transfer provides a 3- to 4-fold increase in the number of ions that are trapped in the ICR cell compared with gated trapping for the same ion accumulation time period. A novel ICR cell was incorporated in the instrument to reduce radial electric field variation for ions with different z-axis oscillation amplitudes. With the ICR cell, called trapping ring electrode cell (TREC), we can tailor the shape of the trapping electric fields to reduce dephasing of coherent cyclotron motion of an excited ion packet. With TREC, nearly an order of magnitude increase in sensitivity is observed. The performance of the instrument with the combination of RIPT, TREC, flared inlet, and ion funnel is presented.  相似文献   

9.
Electrodynamic ion funnels are used to enhance the transmission of ions in electrospray‐based ion injection systems in 0.1 to 30 Torr pressure range. Jet disrupters are commonly employed to prevent droplets and high pressure jets from entering subsequent vacuum regions. This study presents the simulation and testing of an ion funnel containing a jet disrupter using computational fluid dynamics (CFD) and SIMION ion trajectory simulations. Traditional modeling approaches have utilized approximations for the bulk fluid flow fields without including the time‐varying nature of the turbulent flow present in the system, thus yielding idealized results. In this study, the fluid flow fields are calculated using CFD. In an effort to include time dependence, a random velocity vector, whose magnitude is proportional to the square root of the turbulence kinetic energy, was calculated at each time step and added to the velocity of the background gas. These simulations predicted that the transmitted ion current is effectively modulated by the variation of the jet disrupter voltage. The addition of the random velocity vector produced results that closely matched the experiments. The simulations yielded the dependence of the transmission on the jet disrupter voltage, and the voltage necessary for maximum ion throughput was accurately predicted. In addition, the magnitude of the predicted transmission closely matched that of the experimental results. This modeling approach could be extended to similar ion transport and filtering systems in which the effects of turbulent fluid flow cannot be ignored. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A broad effort is underway to make radiofrequency (RF) ion trap mass spectrometers small enough for portable chemical analysis. A variety of trap geometries and fabrication approaches are under development from several research groups. A common issue is the reduced trapping capacity in smaller traps, with the associated reduction in sensitivity. This article explores the key variables that scale with trap size including RF voltage, frequency, electrical capacitance, power and pseudopotential well depth. High‐field electric breakdown constrains the maximum RF voltages used in smaller ion traps. Simulations show the effects of space charge and the limits of trapping capacity as a function of trap dimensions for cylindrical ion traps down to the micrometer level. RF amplitudes that scale as the1/3, 1/2 and 2/3 power of trap radius, r0, were studied. At a fixed level of performance, the number of analyzable ions scales as r0n, with n ranging from 1.55 to 1.75 depending on the choice of voltage scaling. The implications for miniaturized ion trap mass spectrometry are discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
We report on the use of a jet disrupter electrode in an electrodynamic ion funnel as an electronic valve to regulate the intensity of the ion beam transmitted through the interface of a mass spectrometer in order to perform automatic gain control (AGC). The ion flux is determined by either directly detecting the ion current on the conductance limiting orifice of the ion funnel or using a short mass spectrometry acquisition. Based upon the ion flux intensity, the voltage of the jet disrupter is adjusted to alter the transmission efficiency of the ion funnel to provide a desired ion population to the mass analyzer. Ion beam regulation by an ion funnel is shown to provide control to within a few percent of a targeted ion intensity or abundance. The utility of ion funnel AGC was evaluated using a protein tryptic digest analyzed with liquid chromatography Fourier transform ion cyclotron resonance (LC-FTICR) mass spectrometry. The ion population in the ICR cell was accurately controlled to selected levels, which improved data quality and provided better mass measurement accuracy.  相似文献   

12.
Chen YR  Tseng MC  Her GR 《Electrophoresis》2005,26(7-8):1376-1382
A low-flow electrophoresis-mass spectrometry (CE-MS) interface has been developed for interfacing capillary zone electrophoresis (CZE) with electrospray- ionization-mass spectrometry (ESI-MS). The interface consists of two parallel capillary columns (a separation column and a makeup column), and an emitter with a dual beveled edge. While maintaining a relatively low optimum flow rate, the dual-beveled-edge ESI emitter allows the use of a tip with larger orifice. Therefore, this interface is less prone to column blocking in comparison with a flat tip. Primarily attributed to low sample dilution and smaller initial droplet, the interface showed better sensitivity than a conventional sheath liquid interface. Furthermore, the interface was found to be more resistant to the presence of nonvolatile salts. By using 40 mM borate and 20 mM alpha-cyclodextrin (alpha-CD) as the running buffer, four major forms of gangliosides were detected by CE-MS.  相似文献   

13.
We describe the integration of a cyclo-olefin polymer based microchip with a sheathless capillary tip for electrospray ionization-mass spectrometry (ESI-MS). The microchip was fabricated by hot embossing and thermal bonding. Its design includes a side channel for adjusting the composition of the electrospray solution so that analytes in 100% water can be analyzed. The fused silica capillaries, used for sample introduction, and the electrospray tips for MS coupling were directly inserted into the microchannel before thermal bonding of the device. A microfabricated on-chip gold microelectrode was used to apply the electrospray voltage. Annealing the device after thermal bonding increased the pressure resistance of the microchip. The cross section of the microchannel was imaged by scanning electron microscopy to estimate the effects of the annealing step. The relationship between the applied electrospray voltages and MS signal was measured at different flow rates by coupling the device to an ion trap mass spectrometer. The performance of the microchip was evaluated by MS analysis of imipramine in ammonium acetate buffer solution by direct infusion. An alkylacrylate based monolith polymer bed for on-chip sample pretreatment and separation was polymerized in the microchannel and tested for ESI-MS applications.  相似文献   

14.
The complexations of cadmium ion with guanine bases were detected by electrospray ionization mass spectrometry (ESI-MS). In order to explore the toxicity of cadmium, such as oxidative stress to DNA and carcinogenesis, it is very important to determine the interactions between the cadmium ion and nucleotide. The analysis of mixed cadmium ion-guanosine aqueous solution (molar ratio 1 : 9) using ESI-MS (cone voltage 20 V) showed the presence of various cadmium complex ions, such as [n (guanosine) + Cd](2+) (n = 3-8), [2guanine + Cd](2+), [guanosine + guanine + Cd](2+) and [guanosine + 2guanine + Cd](2+). The observed [2guanine + Cd](2+), [guanosine + guanine + Cd](2+) and [guanosine + guanine + Cd](2+) ions are formed through the dissociation of the N-glycoside bond at the interface of ESI-MS. For deoxyguanosine and ethylguanine, similar cadmium complexes were observed. However, the complexes between the cadmium ion and 8-hydroxydeoxyguanosine were not detected. Furthermore, when a higher molar ratio (Cd : guanosine) or cone voltage were used, more of the monovalent ion peaks, such as [Cd(guanine - H)(2) + H](+) and [Cd(guanosine - H)(2) + H](+), were observed and a decrease in the abundance of the divalent ions, such as [n(guanosine)+Cd](2+), occurred.  相似文献   

15.
Contributions of higher-order fields to the quadrupolar storage field produce nonlinear resonances in the quadrupole ion trap. Storing ions with secular frequencies corresponding to these nonlinear resonances allows adsorption of power from the higher-order fields. This results in increased axial and radial amplitudes which can cause ion ejection and collision-induced dissociation (CID). Experiments employing long storage times and/or high ion populations, such as chemical ionization, ion-molecule reaction studies, and resonance excitation CID, can be particularly susceptible to nonlinear resonance effects. The effects of higher-order fields on stored ions are presented and the influence of instrumental parameters such as radiofrequency and direct current voltage (qz and az values), ion population, and storage time are discussed.  相似文献   

16.
Atmospheric pressure interfaces were a fundamental structure for transferring air generated ions into the vacuum manifold of a mass spectrometer. This work is devoted to the characterization of ion transfer in metal capillaries through both experimental and simulated investigations. The impact of capillary configurations on ion transmission efficiency was evaluated using an electrospray mass spectrometer with various bent capillaries as the transfer devices. In addition, a numerical model has been set up by coupling the SIMION 8.0 and the computational flow dynamics for simulation study of ion migration in the complex atmospheric system. The transfer efficiency was found to be highly affected by the variation in electric field and the capillary geometry, revealing that the hydrodynamic and electric force were both dominant and interactional during the transmission process. The consistency of the results from the experimental analysis and simulation modeling proved the validity of the model, which was helpful for understanding ion activity in transfer capillaries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The thermal stability of ribonuclease S (RNase S), an enzymatically active noncovalent complex composed of a 2166-u peptide (S-peptide) and a 11,534-u protein (S-protein), was investigated by electrospray ionization mass spectrometry (ESI-MS) and capillary electrophoresis ESI-MS (CE-ESI-MS). The intensities of peaks corresponding to the RNase S complex were inversely related to both the applied nozzle-skimmer (or capillary-skimmer) voltage bias in the atmosphere-vacuum interface and the temperature of the RNase S solution. By using a heated metal capillary-skimmer interface and a room temperature solution of RNase S, the intensities of RNase S molecular ion peaks were observed to decrease with increasing metal capillary temperature. Mass spectrometric studies with both the nozzle-skimmer and capillary-skimmer interface designs allowed determination of phenomenological enthalpies for dissociation of the RNase S complex in both solution and for the electrosprayed microdroplet-gas phase species. Intact RNase S complex could also be detected with CE-ESI-MS separations by using a 10-mM ammonium bicarbonate (pH 7.9) solution as the electrophoretic buffer. These studies provide new insights into the stability of multiply charged noncovalent complexes in the gas phase and the mass spectrometric conditions required for such studies, and suggest that information regarding solution properties can be obtained by ESI-MS.  相似文献   

18.
A new liquid chromatography/mass spectrometry interface, the laser spray, has been developed. Explosive vaporization and mist formation occur when an aqueous solution effusing out from the tip of the stainless-steel capillary is irradiated from the opposite side of the capillary by a 10.6 microm infrared laser. Weak ion signals could be detected when the plume was sampled through the ion sampling orifice. When a high voltage (3-4 kV) was applied to the stainless-steel capillary, strong ion signals appeared. The ion abundances were found to be orders of magnitude greater than those obtained by conventional electrospray ionization in the case of aqueous solutions. The present method is regarded as an electric-field assisted form of matrix-assisted laser desorption/ionization in which the liquid chromatographic solvent (water, etc.) acts as a liquid matrix. Laser spray ionization is expected to become a versatile method for biological mass spectrometry because this method is compatible with the natural solvent, water.  相似文献   

19.
The concept of interfacing a large-size column for capillary electrophoresis (CE) to electrospray ionization mass spectrometry (ESI-MS) for robust and automatic CE-MS operation is reported. Both standard ionspray interface and microionspray interface have been modified to operate in a sheath flow pattern to overcome the common stability problem in CE-MS coupling. To make the interface sensitive, a step-down stainless steel tube with smaller inner diameter and tapered tip was incorporated onto a larger tube embracing the CE column via cold soldering. The devices were evaluated for quantitative analysis of nucleotides at femtomole level and stable analytical performance in peptide profiling.  相似文献   

20.
The transmission of ions at low m/z can often be either necessary for an application or problematic (e.g., when large numbers of low m/z ions consume a large fraction of an ion trap's capacity). The low m/z ion transmission limit of an electrodynamic ion funnel has been characterized using both experimental and theoretical approaches. A theoretical model is developed based on a series of infinite wire conductors that represent the ring electrodes of the ion funnel. Mathematical relationships for both low and high m/z cutoffs of the idealized two-dimensional system are derived. The low m/z cutoff is also evaluated through a series of experiments that show it is influenced by both the RF frequency and the DC electric field gradient. However, unlike multipole ion guides, there is no marked dependence of the low m/z cutoff on the RF amplitude, in agreement with theoretical results. With this new understanding, ion funnels can be designed and configured to better match the m/z range requirements for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号