首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
Copper indium diselenide (CuInSe2; CIS) layer was electrolytically plated from an aqueous medium at room temperature onto electroless nickel deposited on flexible plastic (Kapton). The CIS depositions were carried out under constant deposition potentials (−0.5 to −1.1 V vs. Ag/AgCl) and at various electrolyte flow rates (0.3 to 1.5 ml/s) under constant applied current. The resulting thin films were characterized using atomic force microscopy, energy-dispersive X-ray spectroscopy, environmental scanning electron microscopy, and X-ray diffraction. The surface morphology and the atomic composition of the deposited CIS film were found to be influenced by the deposition potential under potential control and the electrolyte recirculation rate under current control. Low electrolyte flow rates under constant current control and high cathodic deposition potential under voltage control favor the deposition of indium. CIS films of uniform deposit, smoother surfaces, and with better adhesion properties are favored by moderate electrolyte recirculation rate. At a current density of 0.6 mA/cm2, the electrolyte recirculation rate required to achieve ideal CIS atomic composition was found to be 1.0 ml/s in such a setting. The crystallinity of the film improved after annealing for 2 h at 390 °C under argon atmosphere.  相似文献   

2.
由于缺乏可控的成膜技术,三亚苯类金属有机框架(MOFs)材料的应用受到了限制。我们在气液界面组装了不同厚度的Ni3(HITP)2薄膜(HITP3-=2,3,6,7,10,11-六亚氨基三亚苯),并将制备的薄膜转移到导电玻璃表面。利用X射线衍射(XRD)、场发射透射电子显微镜(FETEM)、场发射扫描电镜(FESEM)、X射线光电子能谱(XPS)和拉曼光谱对样品的晶体结构、微观形貌和元素组成进行表征,采用紫外可见分光光度计以及电化学工作站对Ni3(HITP)2薄膜的电化学和电致变色性能进行了研究和表征。结果表明,得益于Ni3(HITP)2电致变色薄膜的多孔结构和与电解液良好的接触,所得薄膜电极N-20具有较短的着色响应时间/褪色响应时间(0.6/0.7 s),且着色效率可达530 cm2·C-1;而N-50具有较大的光调制范围(740 nm,70%)。  相似文献   

3.
Plasma polymerization of some cyano-containing organic compounds was carried out at 13.56 MHz from the gas phase. The resulting polymer films were smooth and pinhole free. The electrical conductivities of the polymer films varied from 10?12 to 10?7 S cm?1 depending upon which cyano-containing monomer was used. The Al/polymer film/ITO (indium-tin oxide) sandwich cells made from the films demonstrated a photovoltaic effect, and some of them showed good rectifying behavior. Infrared spectroscopy (IR) and ultraviolet spectroscopy (UV) were utilized to characterize the structure of the product polymers. The effects of the original structure in the starting monomers on the structure of the resulting polymers are investigated. The influence of incident light intensity on the photovoltaic characteristics was also investigated.  相似文献   

4.
本工作研究不同过程还原的氧化石墨rGO/ZnO(reduced graphiteoxide/ZnO)复合膜的可见光激发光电转换性能。氧化石墨(GO)经KOH还原处理或NaBH4还原处理后,和氧化锌溶胶混合,通过旋涂法和热处理在F掺杂SnO2薄膜导电玻璃(FTO)衬底上形成复合薄膜。采用XRD、FTIR、FE-SEM、XPS、UV-Vis等方法对复合薄膜的晶相结构、微观形貌等进行表征,并测试了复合薄膜在可见光照射下的光电转换性能。GO的预处理过程对复合薄膜的结构影响显著,采用NaBH4对GO处理更有利于形成均匀薄膜。光电流测试结果表明不同复合薄膜均能实现可见光照射下产生光电流,其原理为rGO的光激发电子跃迁到ZnO,而空穴在rGO中迁移,在rGO与ZnO界面实现光生载流子分离。其中NaBH4处理后的rGO/ZnO复合薄膜光电流密度最大,达6×10-7A·cm-2。  相似文献   

5.
We fabricated films of cubic indium oxide (In2O3) by chemical bath deposition (CBD) for solar water splitting. The fabricated films were characterized by X‐ray diffraction analysis, Raman scattering, X‐ray photoelectron spectroscopy, and scanning electron microscopy, and the three‐dimensional microstructure of the In2O3 cubes was elucidated. The CBD deposition time was varied, to study its effect on the growth of the In2O3 microcubes. The optimal deposition time was determined to be 24 h, and the corresponding film exhibited a photocurrent density of 0.55 mA cm?2. Finally, the film stability was tested by illuminating the films with light from an AM 1.5 filter with an intensity of 100 mW cm?2.  相似文献   

6.
Thin films of cadmium sulfide (CdS) have been wet chemically deposited onto fluorine-doped tin oxide (FTO) coated conducting glass substrates by using non-ionic surfactant; Triton-X 100. An aqueous solution contains cadmium sulphate as a cadmium and thiourea as sulphur precursor. Ammonia used as a complexing agent. The results of measurements of the x-ray diffraction, Raman spectroscopy, optical spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, Brunauer Emmett Teller (BET) surface areas and atomic force microscopy were used for the characterization of the films. These results revealed that the films are polycrystalline, consisting of CdS cubic phase. The films show a direct band gap with energy 2.39 eV. The films show interconnected nanowalls like morphology with well-defined surface area. Finally, the photoelectrochemical (PEC) performance of Triton-X mediated CdS thin film samples were studied. The sample shows photoelectrochemical (PEC) performance with maximum short circuit current density (Jsc) 1.71 mA/cm2 for larger area (1 cm2) solar cells.  相似文献   

7.
Titanium dioxide (TiO2) thin films have been deposited on silicon and glass substrates by the sol-gel process using titanium iso-propoxide [Ti(O-i-C3H7)4]. The bond configuration of the TiO2 thin films was analyzed by using FTIR in the wavenumber range from 400 to 4000 cm–1. The spectral transmittance of as-deposited TiO2 films deposited on fused silica glass was measured in the wavelength range from 200 to 900 nm. X-ray diffraction measurements were performed to determine the crystallinity of the TiO2 films. As-deposited films were amorphous. As the film was annealed at higher temperature, the structure was transformed from amorphous to the anatase crystalline state. The chemical composition of the deposited film was investigated using X-ray photoelectron spectroscopy (XPS). The films are essentially stoichiometric with carbon as the dominant impurity on the surface. Raman spectra show the characteristic of TiO2 anatase phase. The electrical properties of the TiO2 films were measured using capacitance-voltage (C-V) and current-voltage techniques. From C-V measurements, the dielectric constants were calculated to be approximately 26 for the as-deposited films and 75–82 for films annealed at 700°C in different atmosphere. For the as-deposited samples, the breakdown voltage was 2.7 MV/cm, and for an electric field of 1 MV/cm, the leakage current was 5 × 10–5 A/cm2 and the resistivity was 2.2 × 1010 -cm.  相似文献   

8.
The physical and electrochemical properties of sol-gel synthesized nickel-doped tin oxide (NTO) thin films were investigated. The X-ray diffraction results showed that NTO samples exhibited a tetragonal structure. The average crystallite size and the unit cell volume of the films were reduced by Ni increment, while the stacking fault probability was increased. Furthermore, the field-emission scanning electron microscopy images clearly displayed that the worm-like surface morphology of the SnO2 thin films was altered to the spherical feature in 3 and 10 mol% NTO samples. Moreover, by virtue of Ni incorporation, the average transparency of the SnO2 thin films rose up from 67 to 85% in the visible region; also, the optical band gap of the SnO2 sample (3.97 eV) increased and the thin film with 3 mol% dopant concentration showed a maximum value of 4.22 eV. The blue/green emission intensities of photoluminescence spectra of SnO2 thin film changed via Ni doping. The Hall effect measurements revealed that by Ni addition, the electrical conductivity of tin oxide thin films altered from n- to p-type and the carrier concentration of the films decreased due to the role of Ni2+ ions which act as electron acceptors in NTO films. In contrast, 20 mol% Ni-doped sample had the highest mobility about 9.65 cm2 (V s)?1. In addition, the cyclic voltammogram of NTO thin films in KOH electrolyte indicated the charge storage capacity and the surface total charge density of SnO2 thin films enhanced via Ni doping. Moreover, the diffusion constant of the samples increased from 2?×?10?15 to 6.5?×?10?15 cm2 s?1 for undoped and 5 mol% dopant concentration. The electrochemical impedance spectroscopy of the NTO thin films in two different potentials showed the different electrochemical behaviors of n- and p-type thin films. It revealed that the 20 mol% NTO thin film had maximum charge transfer at lower applied potential.  相似文献   

9.
Homogeneous TiO2 single crystals with high exposure of {100} reactive facets were constructed as a seed monolayer on transparent conductive substrates with the desired orientation of reactive facets. A secondary growth process was subsequently carried out on the monolayer seed film to form an axis‐oriented continuous reactive film. Performing secondary growth with different precursors led to optimized conditions for high‐performance photoelectrochemical activity of anatase TiO2 films. Experimental techniques such as UV/Vis absorption spectroscopy, X‐ray diffraction, high‐resolution SEM, and photoelectrochemistry were used to characterize the structural, optical, and photoelectrochemical properties of the as‐synthesized films. As a photoanode in a photoelectrochemical cell, the axis‐oriented reactive film shows a maximum photocurrent density of 0.3 mA cm?2, as opposed to 0.075 mA cm?2 for non‐axis‐oriented (randomly oriented) TiO2 film.  相似文献   

10.
PbS nanoparticles were successfully synthesized in the presence of chitosan (CS) through an in situ method. This method is an effective, simple, and green synthetic approach to preparing nanomaterial films. The structure, morphology, and stability of the materials were examined via Fourier transform infrared spectroscopy, and the characteristic peak of the NH2 group shifted from 1554 to 1598 cm-1 after PbS was formed in the film. The Pb–S bond exhibited a vibrational absorption peak at 605 cm-1, which further confirmed the generation of PbS nanoparticles. Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) procedures were performed as well; well-defined nanoparticles were detected in the CS matrix by SEM. As per DSC findings, the thermal stabilities of the PbS/CS film were 50°C higher than those of pure CS. Moreover, the fluorescence emission of the films was sensitive to the presence of 2-isonaphthol. The effect of 2-isonaphthol concentration on the emission of films increases significantly with an increase in this concentration. The concentration-dependent fluorescence can be described by a correlation equation when 2-isonaphthol concentration ranges from 0 to 12.56 mg/L, and fluorescence results revealed that the PbS/CS nanoparticles were sensitive to 2-isonaphthol in the liquid phase. The proposed method may be applied to detect 2-isonaphthol in the environment and in the chemical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号