首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Samples of macro algae,Codium tomentosum (green),Corallina mediterranea (red),Sphaerococcus coronopifolius (red) andDictyota dichtoma (brown), were collected off Monaco during 1984 and 1988 and analyzed for gamma-emitting radionuclides and transuranium elements. Due to the Chernobyl accident, increased radioactivity in the atmosphere at Monaco was recorded on 30 April 1986 with maximal activity concentrations on 2–3 May. The maximal activity concentrations in sea water occurred on 5–6 May and in the algae on 11 May. The decrease of activity concentrations can be described after May 11 as a single exponential relationship, where elimination rates for different radionuclides and different species specific to the environment can be calculated.The elimination rates thus observed correspond to mean residence times between 70 and 370 days corrected for physical decay. The concentration factors were also estimated and the highest values were found for131I,129Tem, and 110 Agm and lowest for radiocaesium and140Ba. The red algaeSphaerococcus coronopifolius showed generally higher concentration factors than green and brown algae.Regarding transuranium elements, a theoretical contribution from the Chernobyl accident can be made but only242Cm was detected in the algae above previous levels before the accident, due to the relatively small fallout of transuranics.  相似文献   

2.
Cesium-137 concentrations in red, brown and green algae have been studied for the calculation of natural depuration rates. The algae species were collected from the same population of the Black Sea stations during the period of 1986–1995. The natural depuration rates are estimated as biological half-lives. The pattern of depuration results represented by a single component for each algae division. The biological half-lives of137Cs in red (Phyllophora nervosa), green (Chaetomorpha linum) and brown (Cystoceira barbata) algae are estimated to be 18.5, 21.6 and 29.3 months, respectively.137Cs and40K activity levels and their ratios in algae species in two stations in Black Sea region of Turkey have been determined during the period of 1990–1995. The results showed that the Sinop region was more contaminated than the ile region on the Black Sea coast of Turkey from the Chernobyl accident.  相似文献   

3.
This study investigates the effects of different light qualities on the photosynthetic capacity of the brown algae Fucus vesiculosus, from the Norwegian Sea, and Fucus radicans and F. vesiculosus, from the Bothnian Sea. The electron transport rates (ETR) obtained for F. vesiculosus from the Norwegian Sea showed significantly higher levels of light saturation compared with both species of algae from the Bothnian Sea. The maximum of ETR values for the Norwegian Sea strain showed no significant changes due to varying light quality compared with the initial values. For F. vesiculosus, from the Bothnian Sea, treatment with blue light showed an effect after 1 week of 30 and 90 μmol photons m?2 s?1 (P < 0.01), and for F. radicans from the Bothnian Sea, at the irradiance of 90 μmol photons m?2 s?1 and 1 week (P < 0.01). After 1 week in the Bothnian Sea species and after 2 weeks in F. vesiculosus from the Norwegian Sea, the photosynthetic efficiency (α) was significantly higher regardless of light quality and irradiance compared with the initial values. Variation in light quality and irradiance had minor effects on the Fv:Fm values of the three algal strains studied.  相似文献   

4.
The use of a number of species of marine brown algae in the implementation of bioremediation strategies for toxic heavy metals is being considered and evaluated. The biosorption capacity of these algae for heavy metals resides mainly in a group of linear polysaccharides known as alginates that occur as a gel in the algal thallus. The potential for selective metal binding by the biomass of two species of Sargassum was evaluated by 1H-NMR (nuclear magnetic resonance) following a high temperature, alkaline extraction and purification of their alginate polysaccharide. The alkaline extraction protocol applied to Sargassum fluitans and Sargassum siliquosum yielded alginate samples of low viscosity, suitable for direct acquisition of well-resolved spectra. Estimates of both the ratio of β-d-mannopyranuronosyl (M) and α-l-gulopyranuronosyl (G) residues along the polymer chain and the frequencies of occurrence of diad uronic acid residue pairs were obtained. Guluronic acid (G) was the major component in all, extracts and the GG diads accounted for more than 49% of the polymer diads. Whereas the performance of Sargassum spp. in the metal biosorption process is a function of both its alginate content and composition, the occurrence of “G-blocks” in both purified alginates and in the raw brown seaweed is critical because it results in a well-established selectivity for divalentions, potentially increasing the commercial effectiveness of targeted biosorption as a means of remediation.  相似文献   

5.
The distribution of monogalactosyldiacylglyceride (MGDG), digalactosyldiacylglyceride (DGDG), and sulfoquinovosyldiacylglyceride (SQDG) in red, brown, and green algae and marine grasses was studied. Domination of SQDG among the glycolipids is typical of brown algae of the order Fucales. Low SQDG content with high MGDG and DGDG is typical of marine grasses. Marine algae and grasses are characterized by common trends in the distribution of fatty acids (FA) among the glycolipids. Polyunsaturated FA of the (n-3) series are concentrated primarily in galactolipids. The highest unsaturation in red and green algae occurs in MGDG; in brown algae and marine grasses, in DGDG. SQDG has a high content of saturated FA.  相似文献   

6.
Though numerous valuable compounds from red algae already experience high demand in medicine, nutrition, and different branches of industry, these organisms are still recognized as an underexploited resource. This study provides a comprehensive characterization of the chemical composition of 15 Arctic red algal species from the perspective of their practical relevance in medicine and the food industry. We show that several virtually unstudied species may be regarded as promising sources of different valuable metabolites and minerals. Thus, several filamentous ceramialean algae (Ceramium virgatum, Polysiphonia stricta, Savoiea arctica) had total protein content of 20–32% of dry weight, which is comparable to or higher than that of already commercially exploited species (Palmaria palmata, Porphyra sp.). Moreover, ceramialean algae contained high amounts of pigments, macronutrients, and ascorbic acid. Euthora cristata (Gigartinales) accumulated free essential amino acids, taurine, pantothenic acid, and floridoside. Thalli of P. palmata and C. virgatum contained the highest amounts of the nonproteinogenic amino acid β-alanine (9.1 and 3.2 μM g−1 DW, respectively). Several red algae tend to accumulate heavy metals; although this may limit their application in the food industry, it makes them promising candidates for phytoremediation or the use as bioindicators.  相似文献   

7.
Algae can synthesize, accumulate and store large amounts of lipids in its cells, which holds immense potential as a renewable source of biodiesel. In this work, we have developed and validated a GC–MS method for quantitation of fatty acids and glycerolipids in forms of fatty acid methyl esters derived from algae biomass. Algae Scenedesmus dimorphus dry mass was pulverized by mortar and pestle, then extracted by the modified Folch method and fractionated into free fatty acids and glycerolipids on aminopropyl solid‐phase extraction cartridges. Fatty acid methyl esters were produced by an optimized one‐step esterification of fatty acids and transesterification of glycerolipids with boron trichloride/methanol. The matrix effect, recoveries and stability of fatty acids and glycerolipids in algal matrix were first evaluated by spiking stable isotopes of pentadecanoic‐2,2‐d2 acid and glyceryl tri(hexadecanoate‐2,2‐d2) as surrogate analytes and tridecanoic‐2,2‐d2 acid as internal standard into algal matrix prior to sample extraction. Later, the method was validated in terms of lower limits of quantitation, linear calibration ranges, intra‐ and inter‐assay precision and accuracy using tridecanoic‐2,2‐d2 acid as internal standard. The method developed has been applied to the quantitation of fatty acid methyl esters from free fatty acid and glycerolipid fractions of algae Scenedesmus dimorphus .  相似文献   

8.
Several rare earth elements (REEs) and other elements in algae were investigated by ICP-MS and INAA. Algae materials were supplied from an IAEA Intercomparison Study:Chlorella vulg. grown under reduced levels of toxic elements (IAEA-391) and IAEA-393 algae was grown in a medium to which certain toxic elements were added. 34–691 mg of algae samples were dissolved in conc, nitric acid using a microwave sampleppreparation system. REEs could be detected in the order of magnitude of 10−3 ng/g by ICP-MS. Activation analysis failed to detect any REEs because of a strong interference due mainly to24Na and32P. The distriubtion patterns of these REEs in algae slightly differed from those ofCarya sp. and tobacco leaves, and differed significantly from that of fern leaves. The distribution pattern was rather similar to that found in the North American shale composite (NASC).  相似文献   

9.
Brown seaweeds are producers of bioactive molecules which are known to inhibit oncogenic growth. Here, we investigated the antioxidant, cytotoxic, and apoptotic effects of two polysaccharides from the brown algae Colpomenia sinuosa, namely fucoidan and alginate, in a panel of cancer cell lines and evaluated their effects when combined with vitamin C. Fucoidan and alginate were isolated from brown algae and characterized by HPLC, FTIR, and NMR spectroscopy. The results indicated that highly sulfated fucoidans had higher antioxidant and cytotoxic effects than alginate. Human colon cancer cells were the most sensitive to the algal treatments, with fucoidan having an IC50 value (618.9 µg/mL1) lower than that of alginate (690 µg/mL1). The production of reactive oxygen species was increased upon treatment of HCT-116 cells with fucoidan and alginate, which suggest that these compounds may trigger cell death via oxidative damage. The combination of fucoidan with vitamin C showed enhanced effects compared to treatment with fucoidan alone, as evidenced by the significant inhibitory effects on HCT-116 colon cancer cell viability. The combination of the algal polysaccharides with vitamin C caused enhanced degeneration in the nuclei of cells, as evidenced by DAPI staining and increased the subG1 population, suggesting the induction of cell death. Together, these results suggest that fucoidan and alginate from the brown algae C. sinuosa are promising anticancer compounds, particularly when used in combination with vitamin C.  相似文献   

10.
Seaweed, biologically and phycologically referred to as algae, is classified as Rhodophyta (red), Chlorophyta (green), and Ochrophyta (brown). In this study, the concentrations of 13 elements (As, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, and Zn) were investigated for 14 seaweed species of varying classes (Amphiroa bowerbankii, Ceramium virgatum, Dichotomaria tenera, Ellisolandia (Coralline) elongata, Gelidium abbottiorum, Gracilaria canaliculata, Jania rubens, and Jania (Haliptylon) squamata of the Rhodophyta (red); Caulerpa filiformis, Codium capitatum, Halimeda cuneata, and Ulva rigida of the Chlorophyta (green); and Cystoseira myrica and Sargassum elegans of the Ochrophyta (brown) to determine the nutritional value of seaweed based on its medicinal properties, industrial importance, and natural abundance. The elemental distribution in seaweeds was in decreasing order of Ca?>?Mg?>?Fe?>?Cu?>?Mn?>?Zn?>?Cr?>?Co?>?Se?>?As?>?Pb?>?Ni?>?Cd. All edible species contained high levels of macro and microelements with the corali sp. accumulating high levels of Ca. Of the edible seaweeds characterized, only three (G. abbottiorum, E. (Coralline) elongate and C. virgatum) are suitable for human consumption due to high levels of As, Cd, and Pb present in the other species. These three species are also rich in essential nutrients, specifically C. virgatum, which is high in Cu and Se. Hierarchical cluster analysis showed a clear similarity in distribution of essential and toxic elements in similar classes of seaweed.  相似文献   

11.
Dissipation of the herbicide active ingredient glyphosate was investigated in natural waters. To assess combined effects, glyphosate was applied in its pure form (glyphosate isopropylammonium salt) and in preparation Roundup Classic® formulated with polyethoxylated tallowamines (POEA). Standing and running surface water samples originated from Lake Balaton and River Danube between early May and mid-June of 2015. The kinetics of dissipation of glyphosate, measured by high-performance liquid chromatography combined with UV-VIS absorbance detection or tandem mass spectrometry, was investigated under laboratory conditions in aquaria with or without the presence of biofilms. The quantity and the biofilm structure of algal biomass were determined by in vivo fluorimetry and scanning electron microscopy. The presence of POEA affected the dissipation of glyphosate, and dissipation profiles differed in the investigated natural waters. Significantly higher initial concentrations of glyphosate were measured in River Danube for treatment with formulated glyphosate (101.4 ± 6.2 µg L?1), than with glyphosate alone (79.9 ± 6.6 µg L?1), and dissipation to a residual level (57.6 ± 1.4 µg L?1) consequently took longer (approximately by 1 day). Degradation of glyphosate from the initial level (91.24 ± 5.9 µg L?1) in Lake Balaton was not detected. Phytotoxic effects of glyphosate, particularly if enhanced by a formulant on algal biomass, were observed. Thus, 5–18% and 11–33% of algal biomass reduction was determined in River Danube upon treatments with glyphosate and Roundup Classic®, respectively. Corresponding biomass decreases in Lake Balaton were 1.3–13% and 9–14%, respectively, accompanied by an overall decay in the algal biofilms. In River Danube, treatments resulted in the occurrence of 1.4–5.8% of green algae in the algal biomass in 28 days, while green algae were not detected in the untreated control. The results indicate that glyphosate is capable of modifying the structure of the algal community and to induce increased secretion of extracellular polymeric substances matrix in the biofilms assessed.  相似文献   

12.
Algae in drinking water supplies often bring about impact on the water treatment. In this study, a bipolar pulsed dielectric barrier discharge system in three-phase discharge plasma reactor was constructed for investigating its ability to control excessive growth of cyanobacteria, Microcystis aeruginosa. Experimental results show there was almost no change in optical density immediately after the interruption of electrical discharge, but the decreasing trend of optical density, cell density and chlorophyll-a content was obvious during the incubation period, indicating a significant residual effect of electrical discharge process on the algal growth inhibition. Scanning electron microscopy investigation of algae revealed surface damage, apparent leakage of intracellular contents and pores formed after electrical discharge process, which showed that algal cells had no potential to survive and grow. Compared with the control sample, it was observed that electrical discharge on the algal extracellular products has almost no residual effect and the growth rate of algae slightly decreased before three days storage. Hydrogen peroxide was produced by electrical discharge in the μM level and showed a first-order decay. But at such level, the external addition of hydrogen peroxide alone is not likely to cause the residual effect. These results implicated that the growth inhibition of M. aeruginosa was mainly caused by electrical discharge process, and it made the algal cells lose ability to survive, demonstrating the considerable potential of such an alternative process for efficient water purification.  相似文献   

13.
This paper reports toxic effects and bioaccumulation factors of organometallic compounds, mainly organotin species, on algae. We selected two species of microalgae as test algae: one was Scenedesmus obliquus as a representative of fresh-water algae, the other Dunaliella salina and Dunaliella viridis, to represent commonly mixed algae which exist abundantly in Tianjin Harbor, People's Republic of China. For comparison, Chlorella vulgaris was also used in this study. The toxic effect of ten organometallic compounds on the freshwater alga, S. obliquus, was investigated. The ten compounds were (as chlorides) tributyltin (TBT); triphenyltin (TPT); trimethyltin (TMT); dibutyltin (DBT); diphenyltin (DPT); dimethyltin (DMT); trimethyl-lead acetate (TML); dimethyl-arsine (DMA) and two new mixed-alkyltin pesticides, dicyclohexylmethylitin acetate (Cy2MTA) and dicyclohexylmethyltin isobutyrate (Cy2MTB). The order of toxicity of these compounds in fresh-water algae, S. obliquus, was TBT>TPT>DBT> Cy2MTA=TML> Cy2MTB>DPT>TMT>DMA>DMT, according to 96 h EC50 values attained. The ten toxicants were divided into three groups according to the sequence of their toxicities; (a) TBT, TPT; (b) DBT, Cy2MTA, TML, Cy2MTB; (c) DPT, TMT, DMA, DMT. In each group the EC50 values of each compound were quite similar. The difference of EC50 values between two vicinal groups was approximately one order of magnitude. The bioconcentration factor (BCF) of TBT and TPT compared with water in the freshwater alga S. obliquus was >3.32 × 105 and 1.14 × 105, respectively. The BCF of the marine mixed algae was >3.48 × 105. The marine microalga, Chlorella vulgaris, was adaptable to TBT at lower concentration. TBT at high concentration only inhibited the growth of S. obliquus, but it could cause chlorosis anddisintegration of D. salina and D. viridis. Resistance to toxicity of algae against TBT appears in order as follows: C. vulgaris>S. obliquus>D. salina and D. viridis. TBT was metabolized by algae to a less toxic product, DBT. The existence of algal cells accelerated the concentration reduction of TBT. The toxic mechanism of TBT was also studied.  相似文献   

14.
Biomagnification of butyltins (BTs) was examined in a simple food web including seawater, macroalgae (Alaria esculenta, Laminaria longicruris, Ulvaria obscura) and green urchin (Strongylocentrotus droebachiensis). The study was conducted in shallow waters of the St Lawrence Estuary (Canada) adjacent to two areas potentially contaminated by BTs. Levels of tri‐ (TBT), di‐ (DBT) and mono‐BT (MBT) were determined in seawater, green urchin (including faecal matter after sampling) and macroalgae surrounding the urchins at each sampling site. The concentrations of TBT in seawater from all stations were relatively low (3–7 ngSn l?1), and both the TBT and the total BTs (∑BT = MBT + DBT + TBT) concentrations decreased with increase in distance from the BT sources. The concentrations of TBT in algae were 0.35 ngSn g?1 dry weight (DW) in A. esculenta, 0.40 ngSn g?1 DW in L. longicruris and 3.58 ngSn g?1 DW in U. obscura. Following their location, green urchins feeding mainly on these algae accumulated BTs at levels ranging from 4 to 85 ngSn g?1 DW in gonads and from 35 to 334 ngSn g?1 DW in gut. The mean bioconcentration factor (BCF) calculated from seawater to algae ranged from 17 in A. esculenta to 151 in U. obscura, whereas the biomagnification factor (BMF) from algae to urchins ranged from 2 to 17 in gonads and from 10 to 67 in gut. The overall bioaccumulation factor of TBT between seawater and internal organs of urchins reached an average value of 1.2 × 103. These results are the first to illustrate high BT BCFs and BMFs in human‐edible macroalgae and urchins sampled from northern coastal areas with a low TBT contamination level. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
One of the compounds suggested to be responsible for the cyanobacterial dominance over competing green algae is identified. Evidence is provided on the molecular, chemical level that the iron chelator anachelin from the cyanobacterium Anabaena cylindrica promotes both the growth of cyanobacteria and reduces the growth of competing chlorophytes. These results illustrate a molecular strategy of addressing two challenges (nutrient availability and algal competition) by one molecule. Such strategies could be implied in harmful algal blooms in marine and freshwater environments.  相似文献   

16.
The absolute configuration of the gamete-releasing and -attracting pheromone 2-vinyl-3-(5′-vinylcyclopent-2′-enyl)oxirane ( =(+)-caudoxirene; (+)- 1 ) of the marine brown alga Perithalia caudata is established as (2R,3R,1′S,5′S). Highly diastereoselective syntheses and the biological activities of three diastereoisomers of 1 are described. Compound (+)-(2R,3R,1′S,5′S)- 1 is the first fully characterized epoxypheromone from marine brown algae (Phaeophyceae).  相似文献   

17.
18.
Er3+-doped Al2O3 nanopowders have been prepared by the non-aqueous sol-gel method using the aluminum isopropoxide as precursor, acetylacetone as a chelating agent, nitric acid as a catalyzer, and hydrated erbium nitrate as a dopant under isopropanol environment. The different phase structure, including three crystalline types of (Al, Er)2O3 phases, α, γ, θ, and an Er–Al–O stoichiometric compound phase, Al10Er6O24, was observed for the 0.01–0.5 mol% Er3+-doped Al2O3 nanopowders at the sintering temperature of 1,000 °C. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, were detected by a 978 nm semiconductor laser diodes excitation. With increasing Er3+ doping concentration from 0.01 to 0.1 mol%, the intensity of the green and red emissions increased with a decrease of the intensity ratio of the green to red emission. When the Er3+ doping concentration rose to 5 mol%, the intensity of the green and red emissions decreased with an increase of their intensity ratio. The maximum intensity of both the green and red emissions with the minimum of intensity ratio was obtained, respectively, for the 0.1 mol% Er3+-doped Al2O3 nanopowders composed of a single α-(Al,Er)2O3 phase. The intensity ratio of the green emission at 523 and 545 nm increased monotonously for all Er3+ doping concentrations. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3+-doped Al2O3 nanopowders.  相似文献   

19.
Massive quantities of marine seaweed, Ulva armoricana are washed onto shores of many European countries and accumulates as waste. Attempts were made to utilize this renewable resource in hybrid composites by blending the algal biomass with biodegradable polymers such as poly(hydroxy‐butyrate) and poly‐(ε‐caprolactone). Compression‐molded films were developed and examined for their morphological, thermal and mechanical property. The Ulva fibers were well dispersed throughout the continous matrix exhibiting considerable cohesion with both polymers. Occasionally, regions with exposed fibres or aggregates were visible. About 50% algal content seemed to be an ideal concentration, thereafter, thermal stability was impacted. A progressive decrease in melting heat (ΔHm) was observed with increased algal content as well as a decrease in the crystallinity of the polymer matrix due to the presence of the organic filler. The addition of algal fibres improved the Young modulus of the blends, creating a concomitant loss in percent elongation (El) and ultimate tensile strength. Fiber content above 40% impacted tensile property negatively and composites with over 70% fiber contents composites were too fragile. Data suggest that macro algae are compatible with both polymers and processable as fillers in hybrid blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
Abstract

The use of multidimensional fluorescence for detecting the effects of select pollutants on algal fluorescence and production is demonstrated. Multidimensional fluorescence is ideally suited to rapidly measure algal fluorescence generated by both chlorophyll a and accessory pigments, as well as any changes induced by pollutants. Laboratory cultured and natural algae samples from classes Chlorophyceae, Bacillariophyceae, and Cyanophyceae were exposed to substituted nitroaromatics and fluorescence spectra of the algae recorded. Notable spectroscopic changes and fluorescence quenching were observed. In addition, a novel method for rapidly preconcentrating dilute natural marine samples is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号