首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staff at Pacific Northwest National Laboratory have developed a highly sensitive, non-invasive, self-calibrating, on-line sensor to measure the density, speed of sound, and attenuation of ultrasound for a liquid or slurry flowing through a pipeline; the approach can also be applied for measurements made in vessels. The sensor transducers are mounted directly upon the stainless steel wall and the pipeline wall becomes part of the measurement system. Multiple reflections within the stainless steel wall are used to determine the acoustic impedance of the liquid, where the acoustic impedance is defined as the product of the density and the speed of sound. The probe becomes self-calibrating because variations in the pulser voltage do not affect the measurements. This feature leads to the stability of the measurements and the instrument requires much less time and effort to calibrate. Further, the calibration remains constant in time, because it does not depend upon the pulser voltage remaining at a given value. By basing the measurement upon multiple reflections, the sensitivity of the measurement is significantly increased. For slurries with wt% solids concentration of 1% or less, high sensitivity is gained by analyzing attenuation measurements obtained from multiple paths through the slurry. For slurries with higher concentrations of solids, sufficient sensitivity is obtained by analyzing data from a simple transmission. Data are presented that show probe performance for each of these cases: very dilute and highly concentrated kaolin clay slurries.  相似文献   

2.
Zhong H  Wan M  Jiang Y  Wang S 《Ultrasonics》2006,44(Z1):e285-e288
High intensity focused ultrasound (HIFU) is an effective technique for noninvasive local creating coagulative necrotic lesions in deep target volumes without damage to the overlaying or surrounding tissues. It is very important to detect and evaluate lesions generated by HIFU during treatment procedures. This study describes the development of several differential ultrasonic imaging techniques to characterize lesions based on estimation of relative changes in tissue properties derived from backscattered RF data. A single, spherical HIFU transducer was used to produce lesions in soft tissues. The RF signals were recorded as outputs from a modified diagnostic ultrasound system. After some preprocessing, the integrated backscatter values, which can be used as an indicator of the microstructure and backscattering property of tissues, were calculated before and after HIFU treatment. The differential integrated backscatter values were subsequently used to form images revealing the lesion areas. The differential attenuation imaging with the same RF data was also performed, which has been proposed by a few researchers. The results of the differential integrated backscatter imaging were compared with that of the differential attenuation imaging and the former method offers some advantages over the latter method. The two methods above are both based on spectrum analysis and would spend much computational time. Therefore, some simple digital differential imaging methods, including absolute difference (AD), sum absolute differences (SAD), and sum squared differences (SSD) algorithms, were also proposed to detect HIFU-induced lesions. However, these methods cannot provide the information of the degree of tissue damage. Experiments in vitro bovine muscle and liver validated the method of differential integrated backscatter imaging for the characterization of HIFU-induced lesions. And the AD, SAD, and SSD algorithms can be implemented in real-time during HIFU therapy to visualize the lesions.  相似文献   

3.
 介绍了可调谐二极管激光吸收光谱(TDLAS)波长调制技术的测温原理。通过选择水在1 397.75 nm和1 397.87 nm处两条邻近的吸收线,运用多功能数据采集卡对二极管激光器进行控制和信号采集,实现了TDLAS波长调制技术对标定燃烧炉甲烷/空气预混火焰温度的实时在线测量,测量重复频率为250 Hz。分析了温度测量数据抖动的原因,结果表明燃烧过程中火焰本身温度的抖动是测量结果波动的主要原因,测量系统的A类标准不确定度小于53 K。  相似文献   

4.
Marking plain surfaces using laser ablation is widely used in a serial production. However, during a laser marking of small laminated surfaces, a problem arises as a consequence of the gaps between the laminations; this tends to decrease the efficiency of the process. Therefore, a real-time measuring method that can be implemented in an industrial system for laser processing is required. In this contribution, we describe an optodynamic method for the on-line characterization of pulsed-laser marking of a laminated surface. The processing-laser beam generates an optodynamic response, i.e., the shock waves, which then spread into the surrounding gas. By using a laser-beam-deflection probe, the analysis of the obtained signals indirectly enables the real-time monitoring of the surface structure. Evaluation of the results obtained by our on-line measuring method is made by two techniques: non-destructive microscopy with extended depth of field and destructive cross-section measurements with optical microscopy. The performed experiments demonstrate that the established experimental system can simultaneously detect the changes in the laser-marking process. Furthermore, it can provide the position and the size of a gap as well as the orientation and the inclination of the samples.  相似文献   

5.
Use of ultrasound for the determination of flour quality   总被引:1,自引:0,他引:1  
Within the baking industry, the control of dough properties is required to achieve final product quality and consistency. Traditional methods for dough testing are slow and off-line and do not provide fundamental rheological information. There is therefore a need for the development of fast and on-line instruments capable of providing relevant data for baking. Ultrasonics provide a non-destructive, rapid and low cost technique for the measurement of physical food characteristics.In this work, the water content of dough is investigated using ultrasonic techniques. The capability of ultrasound measurements for discriminating flours for different purposes is also studied. Doughs from more than 30 flours were characterised rheologically using a Chopin Alveograph and a Brabender Extensograph. Ultrasound measurements on the doughs prepared from these flours were also performed. The measurements were correlated, showing that ultrasound was an alternative measurement method to discriminate types of flours for different purposes.  相似文献   

6.
An efficient method of adjusting the RF parameters of directly modulated laser diodes (LDs) is presented. By using the light-current parameters estimated from initial RF measurements, the new bias and modulation currents are obtained self-consistently for the target extinction ratio and average optical power. Experiments performed using distributed feedback lasers show that this adjustment method works efficiently, bringing the initial RF parameters very close to the target values within a couple of iterations. This method can be useful in manufacturing where there is a need to adjust the RF performance of the direct-modulated LDs to a desired specification.  相似文献   

7.
Simulation of ultrasound images based on computed tomography (CT) data has previously been performed with different approaches. Shadow effects are normally pronounced in ultrasound images, so they should be included in the simulation. In this study, a method to capture the shadow effects has been developed, which makes the simulated ultrasound images appear more realistic. The method using a focused beam tracing model gives diffuse shadows that are similar to the ones observed in measurements on real objects. Ultrasound images of a cod (Gadus morhua) were obtained with a BK Medical 2202 ProFocus ultrasound scanner (BK Medical, Herlev, Denmark) equipped with a dedicated research interface giving access to beamformed radio frequency data. CT images were obtained with an Aquilion ONE Toshiba CT scanner (Toshiba Medical Systems Corp., Tochigi, Japan). CT data were mapped from Hounsfield units to backscatter strength, attenuation coefficients, and characteristic acoustic impedance. The focused beam tracing model was used to create maps of the transmission coefficient and scattering strength maps. Field II was then used to simulate an ultrasound image of 38.9 × 55.3 × 4.5 mm, using 10(6) point scatterers. As there is no quantitative method to assess quality of a simulated ultrasound image compared to a measured one, visual inspection was used for evaluation.  相似文献   

8.
Seo Weon Heo 《Ultrasonics》2010,50(6):592-2502
An estimation of ultrasound attenuation in soft tissues is critical in the quantitative ultrasound analysis since it is not only related to the estimations of other ultrasound parameters, such as speed of sound, integrated scatterers, or scatterer size, but also provides pathological information of the scanned tissue. However, estimation performances of ultrasound attenuation are intimately tied to the accurate extraction of spectral information from the backscattered radiofrequency (RF) signals. In this paper, we propose two novel techniques for calculating a block power spectrum from the backscattered ultrasound signals. These are based on the phase-compensation of each RF segment using the normalized cross-correlation to minimize estimation errors due to phase variations, and the weighted averaging technique to maximize the signal-to-noise ratio (SNR). The simulation results with uniform numerical phantoms demonstrate that the proposed method estimates local attenuation coefficients within 1.57% of the actual values while the conventional methods estimate those within 2.96%. The proposed method is especially effective when we deal with the signal reflected from the deeper depth where the SNR level is lower or when the gated window contains a small number of signal samples. Experimental results, performed at 5 MHz, were obtained with a one-dimensional 128 elements array, using the tissue-mimicking phantoms also show that the proposed method provides better estimation results (within 3.04% of the actual value) with smaller estimation variances compared to the conventional methods (within 5.93%) for all cases considered.  相似文献   

9.
Pallav P  Hutchins DA  Gan TH 《Ultrasonics》2009,49(2):244-253
This research was performed with the aim of detecting foreign bodies and additives within food products, and to measure selected acoustic properties, without contact to the sample. This would allow use in manufacturing plants on production lines, where contacting the product for ultrasonic inspection would not be feasible. Images of internal structure are reported. The air-coupled system uses capacitive devices which are able to provide sufficient bandwidth for many measurements, including the detection of foreign bodies in cheese, the detection of deliberate additives to chocolate, the detection of fill level and content of metallic food cans, and measurements of frozen dough products. The approach demonstrates that ultrasound has the potential for application to many industrial food packaging environments where non-metallic objects within food need to be detected.  相似文献   

10.
We propose and experimentally demonstrate a harmonic radio frequency (RF) carrier generation and broadband data upconversion technique with single mode and single sideband (− SSB) modulation for radio-over-fiber (RoF) systems using stimulated Brillouin scattering (SBS). The optical carrier-to-sideband ratio (CSR) of the single mode and SSB modulated signal can be easily adjusted to achieve the best received sensitivity performance of the RoF system. By using this method, we successfully demonstrate generation of third-harmonic RF carrier at 32.625 GHz with fLO of 10.875 GHz and upconversion of 1.25-Gb/s data to the RF carrier band. In addition, the data bandwidth is independent of the Brillouin gain profile. Finally, the transmission performance of the RoF downlink system is examined.  相似文献   

11.
Flaws in film affect the quality of the image produced, but the customary method of manual inspection by sampling is not only time-consuming but also wasteful, and it allows faulty film to be processed and packed for distribution. The purpose of the research was to build a significantly more accurate inspection system. To overcome the problem of inefficient flaw identification and unusable flaw-position data recording resulting in the inadequate elimination of faulty film, an advanced inspection system, based on infra-red machine vision incorporating a 940 nm LED light, was built. This system, which has been under trial for 2 years by Lekai, the largest film manufacturing company in China, recognizes flaws in the film, records and stores the flaw-position data; this data being passed to the packing line where the faulty film is automatically cut out. The results of this improved inspection system show a substantial improvement in quality control, efficiency, and considerable reduction of wastage. A surprising result was that previously undetected flaws in the film were discovered.  相似文献   

12.
王辉  辛建国 《光学技术》2006,32(1):85-88
介绍了基于C8051F023单片机的高速数据采集系统的设计,在LABVIEW环境下实现数据处理和分析系统的设计。两者通过串口结合能实现对射频激励源入射和反射信号的电压值、功率值、频率、占空比等参数实时监测。  相似文献   

13.
主动声纳的自适应显示数据缩减算法   总被引:1,自引:1,他引:0       下载免费PDF全文
本文讨论了主动声纳系统中主动检测结果的数据显示问题.首先介绍传统显示数据缩减的几种算法,在这些基础上,我们提出一种新颖的自适应显示数据缩减算法.此算法利用宽带信号特征和主动检测统计特征,通过分段加权平均并取用子段平均最大值的方法,自适应地缩减待显示数据.仿真结果表明,此算法可以提高数据输出的信息量,减小输出信噪比损失,其性能优于传统的几种显示数据缩减算法,有助于提高人机交互的可靠性,并且算法简单,适于实时实现.  相似文献   

14.
The ground state hyperfine splitting of87Sr+ was measured with a precision of 1×10–8. The experiments were performed with an RF ion trap connected to an ISOL (isotope separator on-line), where all the possible transitions between Zeeman sublevels were observed by a laser-microwave double resonance method. The magnetic dipole hyperfine constant was determined to beA=–1 000 473.673 (11) kHz.  相似文献   

15.
The advantages of open, vertical-field, magnetic resonance-guided, focused ultrasound surgery (MRgFUS) are attractive. The inverse technique using the bi-boundary conditions is proposed to design a uterine-oriented intraoperative RF coil with an ultrasound aperture for the MRgFUS system. In the current proposed scheme, the desired magnetic field of the RF coil was set to completely overlap the target organ. The current density distribution on the RF coil surface, accounting for the expected magnetic field, was solved using the inverse technique. The stream function was available through the ‘discretization’ of the current density distribution on the RF coil surface. The coil windings were obtained from the contour plot of the stream function. As a modification of previous designs, the bi-boundary conditions are proposed in the inverse technique for the existence of the ultrasound aperture. Based on the obtained coil windings, a prototype coil was constructed. MR imaging of the phantom and the human body was performed to show the efficacy of the prototype coil. The results of temperature measurement using the prototype coil in a 0.4-T MR system were satisfactory. The performance of the prototype coil improved compared with the previously reported design.  相似文献   

16.
The rapid on-line or off-line automated vision inspection is a critical operation in the manufacturing fields. Accordingly, this present study designs and characterizes a novel precise optics-based autofocusing microscope with a rapid response and no reduction in the focusing accuracy. In contrast to conventional optics-based autofocusing microscopes with centroid method, the proposed microscope comprises a high-speed rotating optical diffuser in which the variation of the image centroid position is reduced and consequently the focusing response is improved. The proposed microscope is characterized and verified experimentally using a laboratory-built prototype. The experimental results show that compared to conventional optics-based autofocusing microscopes, the proposed microscope achieves a more rapid response with no reduction in the focusing accuracy. Consequently, the proposed microscope represents another solution for both existing and emerging industrial applications of automated vision inspection.  相似文献   

17.
Bai J  Liu K  Jiang Y  Ying K  Zhang P  Shao J 《Ultrasonics》2008,48(5):394-402
Quantitative ultrasound tissue characterization based on integrated backscatter (IB) has shown great potential in detecting myocardial ischemia. The magnitude of the cyclic variation in IB (CVIB) has been considered one promising parameter in assessing regional myocardial contractile performance. This lab has previously developed a novel ultrasonic fusion imaging method based on CVIB. However, the major problem for clinical applications of this technique is that the myocardial tissue could not be tracked effectively without cardiologist’s intervention. This paper introduced a speckle tracking method into the CVIB-weighted imaging system, called speckle tracking algorithm with adaptive window size (STAWAWS), to track myocardial tissue particle automatically. This method provides a way to obtain the particle’s positions frame by frame in a series of B-mode images. Then using the RF signals according to the particle’s positions the IB curve can be calculated to produce CVIB value. The method was applied on the experimental and clinical data cases’s analysis. The results of dog’s data processing showed that this method could eliminate the misunderstanding of myocardial ischemia especially near the endocardium. The results of clinical data suggested that this method had clinical significance in detecting ischemic myocardium. Though the CVIB-weighted images obtained by the use of this auto-tracking method can improve the accuracy of detecting myocardial ischemia, it is not real-time analysis and the clinical data cases are not sufficient. Further clinical validation is still needed in the future’ work.  相似文献   

18.
快速准确监测农田土壤全氮含量,可显著提高土壤肥力诊断与评价工作的效率。传统测定土壤全氮的方法存在耗时费力、成本高、环境污染等缺点,而基于光谱学原理的土壤全氮定量方法克服了传统测量的劣势。中红外(MIR)光谱相较于可见光-近红外(VNIR)光谱而言,具有更多的波段数和信息量,如何利用中红外光谱监测土壤全氮含量是具有重要应用前景的研究课题。为了探索中红外光谱对土壤全氮监测的可行性,以新疆南疆地区采集的246个农田土样为研究对象,以室内测定的全氮含量和中红外光谱反射率数据为数据源,分析了不同全氮含量土样的中红外光谱特征差异,以主成分分析法(PCA)和连续投影算法(SPA)对光谱数据进行降维,然后采用偏最小二乘回归(PLSR)、支持向量机(SVM)、随机森林(RF)和反向传播神经网络(BPNN)四种建模方法分别构建基于全波段和降维数据的土壤全氮含量定量反演模型。研究结果表明:(1)土壤在中红外波段光谱反射率随全氮含量的增加而增加,在3 620,2 520,1 620和1 420 cm-1附近存在明显的吸收谷;将中红外光谱数据进行最大值归一化处理后,可明显提高土壤光谱反射率与全氮含量的相关性。(2)对比两种数据降维方法,PCA和SPA分别使模型变量数减少了99.8%和97.5%,但以PCA提取的8个主成分为自变量建立的模型预测精度总体要高于SPA对应的模型,因此以PCA提取的主成分建模更适于土壤全氮模型的构建。(3)在建模集中,PLSR和SVM模型以全波段建模精度最高,但建模变量数多,建模效率较低,而RF和BPNN模型分别以PCA和SPA降维后的数据建立的模型在保持精度相当的前提下,可显著提高建模效率;在预测集中,基于PCA降维数据的BPNN模型预测能力最高,R2和RMSE分别为0.78和0.12 g·kg-1,RPD和RPIQ值分别为2.33和3.54,模型具备较好的预测能力。研究结果可为农田土壤全氮含量快速估测提供一定的参考价值。  相似文献   

19.

Motivation

Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications.

Objectives

Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine.

Methods

The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time.

Results and discussion

The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by ∼2.3 times, thus allowing more than 6 s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future.

Conclusions

The developed research interface can aid researchers in the rapid testing and clinical evaluation of new ultrasound algorithms and applications. Additionally, we believe that our approach would be applicable to designing research interfaces on other ultrasound machines.  相似文献   

20.
《Current Applied Physics》2010,10(6):1427-1435
The paper presents a new body RF coil design scheme for a low-field open MRI system. The RF coil is composed of four rectangular loops which are made of wide copper strips located near the surfaces of the bottom and top pole faces of the permanent magnet. The body RF coil has been designed by using the pseudo electric dipole radiation (PEDPR) method with the Metropolis algorithm. In the calculation of the RF fields via the finite difference time domain (FDTD) method, the computational time increases as the RF frequency becomes lower. Moreover, the computational process using the FDTD method takes a very long time when the RF coil is optimized. The optimization requires varying the configuration of the RF coil system and performing successive calculations of field strength and field homogeneity. When we perform these successive calculations, the computational time can be reduced by using the PEDPR method, where the segmented current elements of the RF coil are treated as pseudo electric dipole radiation sources. Because the RF coil is made of wide strips, the variation of the current density on the strip has been considered in the B1-field calculation. For each configuration of the RF coil system, the current distribution is calculated via circuit analysis, where each copper strip is considered as a parallel combination of current element lines. The preliminary field calculation study by the FDTD method verifies both the circuit analysis method for the current distribution and the PEDPR method for the radiation field strength. The optimization of the RF coil configuration is performed by the Simulated Annealing (SA) process using the Metropolis algorithm. Simulations have been performed for a 10 MHz RF frequency. The optimized RF coil has four rectangular loops of 37 cm × 100 cm with 6.5 cm wide strips which are separated vertically 49 cm and horizontally center-to-center 63 cm. In the 25 cm diameter of spherical volume (DSV), the design results show a good field inhomogeneity of the B1-field below 0.49 dB (5.8%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号