首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cang H  Sun T  Li ZY  Chen J  Wiley BJ  Xia Y  Li X 《Optics letters》2005,30(22):3048-3050
We describe gold nanocages as a new class of potential contrast agent for spectroscopic optical coherence tomography (OCT). Monodispersed gold nanocages of an approximately 35 nm edge length exhibit strong optical resonance, with the peak wavelength tunable in the near-infrared range. We characterized the optical properties of the nanocage by using OCT experiments along with numerical calculations, revealing an absorption cross section approximately 5 orders of magnitude larger than conventional dyes. Experiments with tissue phantoms demonstrated that the nanocages provide enhanced contrast for spectroscopic as well as conventional intensity-based OCT imaging.  相似文献   

2.
High-speed, high-resolution optical coherence tomography (OCT) imaging of the human retina is demonstrated using a frequency-swept laser at 850 nm. A compact external cavity semiconductor laser design, optimized for swept-source ophthalmic OCT, is described. The laser enables an effective 16 kHz sweep rate with >10 mm coherence length and a tuning range of approximately 35 nm full width at half-maximum, yielding an axial resolution of <7 micro m in tissue.  相似文献   

3.
A novel, compact, user friendly fiber laser with a broad emission bandwidth (MenloSystems, lambdac = 1375 nm, deltalambda = 470 nm, Pout = 4 mW) was used to achieve unprecedented sub-2-microm axial resolution optical coherence tomography (OCT) in nontransparent biological tissue in the 1300-nm wavelength region. Fresh human skin and arterial biopsies were imaged ex vivo with approximately 1.4-microm axial and approximately 3-microm lateral resolution and 95-dB sensitivity, demonstrating the great potential for clinical OCT applications of this stable, low-cost, and turn-on-key fiber laser.  相似文献   

4.
A high-speed (47,000 A-scans/s), ultrahigh axial resolution Fourier domain optical coherence tomography (OCT) system for retinal imaging at approximately 1060 nm, based on a 1024 pixel linear array, 47 kHz readout rate InGaAs camera is presented. When interfaced with a custom superluminescent diode (lambda(c) = 1020 nm, Deltalambda = 108 nm, Pout = 9 mW), the system provides 3.3 microm axial OCT resolution at the surface of biological tissue, approximately 4.5 microm in vivo in rat retina, approximately 5.7 microm in vivo in human retina, and 110 dB sensitivity for 870 microW incident power and 21 mus integration time. Retinal tomograms acquired in vivo from a human volunteer and a rat animal model show clear visualization of all intraretinal layer and increased penetration into the choroid.  相似文献   

5.
A Fourier domain mode-locked (FDML) laser at 1050 nm for ultra-high-speed optical coherence tomography (OCT) imaging of the human retina is demonstrated. Achievable performance, physical limitations, design rules, and scaling principles for FDML operation and component choice in this wavelength range are discussed. The fiber-based FDML laser operates at a sweep rate of 236 kHz over a 63 nm tuning range, with 7 mW average output power. Ultra-high-speed retinal imaging is demonstrated at 236,000 axial scans per second. This represents a speed improvement of approximately10x over typical high-speed OCT systems, paving the way for densely sampled volumetric data sets and new imaging protocols.  相似文献   

6.
We describe high-speed Fourier domain optical coherence tomography (OCT) using optical demultiplexers (ODs) for spectral dispersion. The OD enables separation of a narrow spectral band of 14 GHz (0.11 nm) from a broadband incident light at 256 different frequencies in 25.0 GHz intervals centered at 192.2 THz (1559.8 nm). OCT imaging of 60,000,000 axial scans per second was achieved through parallel signal acquisition using 256 balanced photoreceivers to simultaneously detect all the output signals from the ODs in a Fourier domain OCT system. OCT imaging at a 16 kHz frame rate, 1100 A-lines per frame, 3 mm depth range, and 23 microm resolution was demonstrated using a resonant scanner for lateral scanning.  相似文献   

7.
In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50–60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.  相似文献   

8.
Xi J  Chen Y  Zhang Y  Murari K  Li MJ  Li X 《Optics letters》2012,37(3):362-364
We report an all-fiber-optic scanning, multimodal endomicroscope capable of simultaneous optical coherence tomography (OCT) and two-photon fluorescence (TPF) imaging. Both imaging modalities share the same miniature fiber-optic scanning endomicroscope, which consists of a double-clad fiber with a core operating in single mode at both the OCT (1310 nm) and two-photon excitation (1550 nm) wavelengths, a piezoelectric two-dimensional fiber-optic beam scanner, and a miniature aspherical compound lens suitable for simultaneous acquisition of en face OCT and TPF images. A fiber-optic wavelength division multiplexer was employed in the integrated platform to combine the low coherence OCT light source and the femtosecond two-photon excitation laser into the same optical path. Preliminary imaging results of cell cultures and mouse tissue ex vivo demonstrate the feasibility of simultaneous real-time OCT and TPF imaging in a scanning endomicroscopy setting for the first time.  相似文献   

9.
A novel (to our knowledge) dual-core ytterbium (Yb(3+)) doped fiber, as an optically pumped amplifier, boosts the output power from a 1060 nm swept source laser beyond 250 mW, while providing a wavelength tuning range of 93 nm, for optical coherence tomography (OCT) imaging. The design of the dual-core Yb-doped fiber amplifier and its multiple wavelength optical pumping scheme to optimize output bandwidth are discussed. Use of the dual-core fiber amplifier showed no appreciable degradation to the coherence length of the seed laser. The signal intensity improvement of this amplifier is demonstrated on a multichannel in vivo OCT imaging system at 1060 nm.  相似文献   

10.
Pan YT  Xie TQ  Du CW  Bastacky S  Meyers S  Zeidel ML 《Optics letters》2003,28(24):2485-2487
We report an experimental study of the possibility of enhancing early bladder cancer diagnosis with fluorescence-image-guided endoscopic optical coherence tomography (OCT). After the intravesical instillation of a 10% solution of 5-aminolevulinic acid, simultaneous fluorescence imaging (excitation of 380-420 nm, emission of 620-700 nm) and OCT are performed on rat bladders to identify the photochemical and morphological changes associated with uroepithelial tumorigenesis. The preliminary results of our ex vivo study reveal that both fluorescence and OCT can identify early uroepithelial cancers, and OCT can detect precancerous lesions (e.g., hyperplasia) that fluorescence may miss. This suggests that a cystoscope combining 5-aminolevulinic acid fluorescence and OCT imaging has the potential to enhance the efficiency and sensitivity of early bladder cancer diagnosis.  相似文献   

11.
We report the use of optical coherence tomography (OCT) for noninvasive measurement of the refractive index profile of a crystalline lens of a fisheye. The approach exploits the fact that OCT provides a direct measurement of the optical path of the light traveled through the medium. The gradient refractive index profile for the crystalline lens was retrieved by iterative fitting of the optical path calculated by the ray tracing method with that experimentally measured using OCT. The estimated error in refractive index is approximately 1%. The measured gradient refractive index and Matthiessen’s ratio (ratio of focal length to lens radius) are in good agreement with the previously reported values. PACS 42.62.Be; 42.30.-d; 42.30.Wb; 07.60.Vg  相似文献   

12.
In this study, the optical properties of two nano-sized polymer colloids in optical coherence tomography (OCT) were compared in vitro with respect to their potential use as contrast agents. We used two types of particles: compact hydrophobic spherical polystyrene (PS) particles and soft water-swollen nanogel (NG) particles both with grafted hydrophilic shell, both prepared at two different sizes (PS at 300 and 150?nm, NG at 300 and 200?nm). The OCT backscattering signals of the particles in a vessel-mimicking highly scattering agar/TiO2 phantom were compared on either number of particles or weight percent. Larger particles and higher concentrations produced higher OCT contrast. At each concentration tested, a markedly higher contrast was achieved by PS particles than NG particles. PS particles generated a markedly higher OCT contrast than the phantom at concentrations of at least 1?×?1010 or 0.1?% for PS 300?nm and at least 3?×?1011 particles/mL or 0.4?% for PS 150?nm. The contrast generated by NG 300?nm was above the phantom contrast at concentrations of at least 3?×?1011 particles/mL or 1?%, whereas NG 200?nm only at 4?%. At any given weight percent, the differences in OCT contrast between differently sized particles were much less evident than in the comparison based on particle number. PS 300?nm generated also a good contrast ex vivo on chicken muscle tissue. These results strongly suggest that PS spheres have strong potential as intravascular OCT contrast agent, while NG particles need further contrast enhancer for being used as OCT contrast agent.  相似文献   

13.
We demonstrate polyethylene-glycol-coated single-walled carbon nanotubes (CNTs) as contrast agents for both photothermal optical coherence tomography (OCT) and magnetic-resonance imaging (MRI). Photothermal OCT was accomplished with a spectral domain OCT system with an amplitude-modulated 750 nm pump beam using 10 mW of power, and T(2) MRI was achieved with a 4.7 T animal system. Photothermal OCT and T(2) MRI achieved sensitivities of nanomolar concentrations to CNTs dispersed in amine-terminated polyethylene glycol, thus establishing the potential for dual-modality molecular imaging with CNTs.  相似文献   

14.
Ghosn MG  Tuchin VV  Larin KV 《Optics letters》2006,31(15):2314-2316
We demonstrate the capability of the optical coherence tomography (OCT) technique for depth-resolved monitoring and quantifying of glucose diffusion in fibrous tissues (sclera). The depth-resolved and average permeability coefficients of glucose were calculated. We found that the glucose diffusion rate is not uniform throughout the tissue and is increased from approximately 2.39+/-0.73 x 10(-6) cm/s at the epithelial side to 8.63+/-0.27 x 10(-6) cm/s close to the endothelial side of the sclera. Results demonstrated that the OCT technique is capable of depth-resolved monitoring and quantification of glucose diffusion in sclera with a resolution of approximately 40 mum.  相似文献   

15.
Optical coherence tomography (OCT) sensors traditionally use scanning optical delay lines with moving parts and a single detector. OCT systems with a linear detector array (linear OCT or L-OCT) are simple and robust, but a detector with approximately 10,000 pixels is needed for an imaging depth of 2mm, which is necessary for most biomedical applications. We present a new optical setup for L-OCT with an increased measurement range. An additional grating performs a reduction of the spatial frequencies of the fringe pattern on the detector without loss in the signal-to-noise ratio, so the signal can be sampled with a minimal number of pixels. The theory for this approach is addressed and the first measurements are presented.  相似文献   

16.
Spectroscopic optical coherence tomography   总被引:12,自引:0,他引:12  
Spectroscopic optical coherence tomography (OCT), an extension of conventional OCT, is demonstrated for performing cross-sectional tomographic and spectroscopic imaging. Information on the spectral content of backscattered light is obtained by detection and processing of the interferometric OCT signal. This method allows the spectrum of backscattered light to be measured over the entire available optical bandwidth simultaneously in a single measurement. Specific spectral features can be extracted by use of digital signal processing without changing the measurement apparatus. An ultrabroadband femtosecond Ti:Al(2)O(3) laser was used to achieve spectroscopic imaging over the wavelength range from 650 to 1000 nm in a simple model as well as in vivo in the Xenopus laevis (African frog) tadpole. Multidimensional spectroscopic data are displayed by use of a novel hue-saturation false-color mapping.  相似文献   

17.
We experimentally and theoretically investigated the performance of a fiber-optic based Fourier-domain common-path optical coherence tomography (OCT). The fiber-optic common-path OCT operated at the 840-nm center wavelength. The resolution of the system was 8.8 μm (in air) and the working depth using a bare fiber probe was approximately 1.5 mm. The signal-to-noise ratio (SNR) of the system was analyzed. OCT images obtained by the system were also presented.  相似文献   

18.
Doppler optical coherence tomography (OCT) can image tissue structure and blood flow at micrometer-scale resolution but has limited imaging depth. We report a novel, linear-scanning, needle-based Doppler OCT system using angle-polished gradient-index or ball-lensed fibers. A prototype system with a 19-guage (diameter of approximately 0.9 mm) echogenic needle is constructed and demonstrates in vivo imaging of bidirectional blood flow in rat leg and abdominal cavity. To our knowledge, this is the first demonstration of Doppler OCT through a needle probe in interstitial applications to visualize deeply situated microcirculation.  相似文献   

19.
研究观察了吲哚菁绿(ICG)对大鼠脑皮层血管近红外光谱学特性及光学相干层析成像(OCT)的影响。实验中,将SD大鼠颞部开颅,暴露并标记大脑中动脉,给予动物尾静脉注射ICG溶液,应用可见-近红外反射光谱仪和OCT系统检测脑皮层血管反射光谱的动态变化和衰减系数的特征性变化。结果显示,ICG注射后,大脑中动脉的反射光谱在ICG的吸收峰(800nm)左右出现一个特异性的低反射峰并随时间而逐渐变化;在注射ICG 3min时,本特异性低反射峰值达到最强,反射光谱的特征性变化可以为实现最佳OCT图像效果提供时间点。此外,ICG注射后的脑动脉OCT信号衰减系数为24.692±1.471,明显高于未注射ICG时15.088±1.602(p<0.01)。实验结果说明ICG可以增加血管对近红外光的吸收,为增强血管的检测能力提供理论参考,也为无损监测血管病变、肿瘤血管新生及血液动力学变化提供一种可行性检测手段。  相似文献   

20.
Mao Y  Chang S  Murdock E  Flueraru C 《Optics letters》2011,36(11):1990-1992
We report a novel (to the best of our knowledge) simultaneous 1310/1550 two-wavelength band swept laser source and dual-band common-path swept-source optical coherence tomography (SS-OCT). Synchronized dual-wavelength tuning is performed by using two laser cavities and narrowband wavelength filters with a single dual-window polygonal scanner. Measured average output powers of 60 and 27 mW have been achieved for the 1310 and 1550 nm bands, respectively, while the two wavelengths were swept simultaneously from 1227 to 1387 nm for the 1310 nm band and from 1519 to 1581 nm for the 1550 nm band at an A-scan rate of 65 kHz. Broadband wavelength-division multiplexing is used for coupling two wavelengths into a common-path single-mode GRIN-lensed fiber probe to form dual-band common-path SS-OCT. Simultaneous OCT imaging at 1310 and 1550 nm is achieved. This technique allows for in vivo high-speed OCT imaging with potential application in functional (spectroscopic) investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号