首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knoevenagel condensation of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione 3 with aryl cyanomethyl ketones 9 generates 3‐(aroyl(cyano)methylidene)oxindoles 10 that react with cyclic 1,3‐diketones 11 to generate polycyclic hemiacetal spiro[4H‐2,3‐dihydropyran‐3,3′‐oxindoles] 13 .  相似文献   

2.
Reaction of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij ]quinoline‐1,2‐dione ( 3 ) with two equivalents of cyclic 1,3‐dicarbonyl compounds under acid catalysis generates spiro[4H‐pyran‐3,3′‐oxindoles] 7 . In contrast, though base catalysis also achieves double addition, the final products 8 result from subsequent ring opening of the five‐membered lactam via intramolecular attack by enolate; these products can be converted into the spiro[4H‐pyran‐3,3′‐oxindoles] by treatment with acid.  相似文献   

3.
Reaction 6H‐pyrrolo[3,2,1‐de ]acridine‐1,2‐dione ( 7 ) with cyclic 1,3‐dicarbonyl compounds in the presence of malononitrile or ethyl cyanoacetate generates spiro[4H‐pyran‐3,3′‐oxindoles] 8 .  相似文献   

4.
Three‐component reactions of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione with malononitrile, or ethyl cyanoacetate, and cyclic six‐membered or a five‐membered 1,3‐diketone, produce spiro[4H‐pyran‐3,3′‐oxindoles].  相似文献   

5.
Lactone analogues of 3‐substituted oxindoles (=1,3‐dihydro‐2H‐indol‐2‐ones) and nonbenzoid oxa‐analogous isoindigoid or nonbenzoid isoindigoid dyes were prepared by the reactions of furan‐2,3‐diones with oxindole and Lawesson reagent (Schemes 1 and 3), respectively. So, new derivatives of 2‐oxobutanoic acid, bis‐furanone, and bis‐pyrrolone, which are potentially biologically active compounds, were synthesized for the first time.  相似文献   

6.
A copper(II)‐catalysed approach to oxindoles, thio‐oxindoles, 3,4‐dihydro‐1H‐quinolin‐2‐ones, and 1,2,3,4‐tetrahydroquinolines via formal C?H, Ar?H coupling is described. In a new variant, copper(II) 2‐ethylhexanoate has been identified as an inexpensive and efficient catalyst for this transformation, which utilises atmospheric oxygen as the re‐oxidant.  相似文献   

7.
p‐Toluenesulfonic acid mediated formal [3+3] cyclization of 3‐indolylmethanols with 3‐isothiocyanato oxindoles was realized. This transformation allowed for the synthesis of a series of novel tetrahydro‐β‐carboline‐1‐thione spirooxindoles in moderate to excellent yields (up to 99%) with generally good diastereoselectivities (up to >20:1). The structure of one product was determined by an X‐ray crystal structural analysis.  相似文献   

8.
Two efficient and diastereoselective procedures for the synthesis of (Z)‐6‐(2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐diones by aldol‐crotonic condensation of 1,3‐dimethyl‐3a,9a‐diphenyl‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐dione with isatins under acidic or basic catalysis are reported. Isomerization in (Z)‐7‐(1‐allyl‐2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐1,3‐dimethyl‐3a,9a‐diphenyl‐1,3a,4,9a‐tetrahydroimidazo[4,5‐e]thiazolo[2,3‐c]‐1,2,4‐triazin‐2,8(3H,7H)‐dione was observed under basic conditions.  相似文献   

9.
Alkyl 2‐[2‐ethoxycarbonyl‐2‐(2‐pyridinyl)ethenyl]amino‐3‐dimethylaminopropenoates 3 and 4 were transformed with C‐and N‐nucleophiles into β‐heteroaryl‐α,β‐didehydro‐α‐amino acid derivatives 13 ‐ 16 , substituted 3‐amino‐4H‐quinolizin‐4‐one 17, 2H,5H‐benzo[b]pyran‐2,5‐dione 18 and 19 , 2H,5H‐pyrano[4,3‐b]pyran‐2,5‐dione 20 , 2H,5H‐pyrano[3,2‐c]benzo[b]pyran‐2,5‐dione 21 , 2H‐1‐benzopyran‐2‐one 22 and 24 , pyrido[l,2‐a]pyrimidin‐4‐one 31–34 and 39 derivatives, and N‐heteroaryl‐1H‐imidazole‐4‐carboxylates 37 and 38 .  相似文献   

10.
An efficient Pd‐catalyzed carbonylative α‐arylation of 2‐oxindoles with aryl and heteroaryl bromides for the one‐step synthesis of 3‐acyl‐2‐oxindoles has been developed. This reaction proceeds efficiently under mild conditions and is complementary to the more common oxindole forming reactions. The transformation only requires a mild base and provides good to excellent yields even with heteroaromatic substrates. Employing a near stoichiometric amount of 13COgen, the methodology was easily extended to [13C] acyl labeling. The general applicability of the reaction conditions was demonstrated in the synthesis of a structure related to the pharmaceutically active 3‐acyl‐2‐oxindoles, tenidap.  相似文献   

11.
Asymmetric intramolecular direct hydroarylation of α‐ketoamides gives various types of optically active 3‐substituted 3‐hydroxy‐2‐oxindoles in high yields with complete regioselectivity and high enantioselectivities (84–98 % ee). This is realized by the use of the cationic iridium complex [Ir(cod)2](BArF4) and the chiral O‐linked bidentate phosphoramidite (R,R)‐Me‐BIPAM.  相似文献   

12.
When 2,3‐dichloro‐1,4‐naphthoquinone (DCHNQ) ( 1 ) is allowed to react with 1‐phenylbiguanide (PBG) ( 2 ), 4‐chloro‐2,5‐dihydro‐2,5‐dioxonaphtho[1,2‐d]imidazole‐3‐carboxylic acid phenyl amide ( 4 ), 6‐chloro‐8‐phenylamino‐9H‐7,9,11‐triaza‐cyclohepta[a]naphthalene‐5,10‐dione ( 5 ) and 4‐dimethyl‐amino‐5,10‐dioxo‐2‐phenylimino‐5,10‐dihydro‐2H‐benzo[g]quinazoline‐1‐carboxylic acid amide ( 6 ) were obtained. While on reacting 1 with 2‐guanidinebenzimidazole (GBI) ( 3 ) the products are 3‐(1H‐benzoimidazol‐2‐yl)‐4‐chloro‐3H‐naphtho[1,2‐d]imidazole‐2,5‐dione ( 7 ) and 3‐[3‐(1H‐benzoimidazol‐2‐yl)‐ureido]‐1,4‐dioxo‐1,4‐dihydronaphthalene‐2‐carboxylic acid dimethylamide ( 8 ).  相似文献   

13.
A mild, metal‐free approach has been realized for the facile construction of highly valuable 3‐(hetero)aryl‐3‐hydroxy‐2‐oxindoles. Direct arylations of 3‐acyloxy‐2‐oxindoles with diaryliodonium salts as arylation reagents are implemented in the presence of K2CO3 at room temperature without using an organometallic promoter to deliver an array of 3‐(hetero)aryl‐3‐hydroxy‐2‐oxindoles in good yields.  相似文献   

14.
The reaction of 3‐N‐(2‐mercapto‐4‐oxo‐4H‐quinazolin‐3‐yl)acetamide ( 1 ) with hydrazine hydrate yielded 3‐amino‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 2 ). The reaction of 2 with o‐chlorobenzaldehyde and 2‐hydroxy‐naphthaldehyde gave the corresponding 3‐arylidene amino derivatives 3 and 4 , respectively. Condensation of 2 with 1‐nitroso‐2‐naphthol afforded the corresponding 3‐(2‐hydroxy‐naphthalen‐1‐yl‐diazenyl)‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 5 ), which on subsequent reduction by SnCl2 and HCl gave the hydrazino derivative 6. Reaction of 2 with phenyl isothiocyanate in refluxing ethanol yielded thiourea derivative 7. Ring closure of 7 subsequently cyclized on refluxing with phencyl bromide, oxalyl dichloride and chloroacetic acid afforded the corresponding thiazolidine derivatives 8, 9 and 10 , respectively. Reaction of 2‐mercapto‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 11 ) with hydrazine hydrate afforded 2‐hydrazino‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 12 ). The reactivity 12 towards carbon disulphide, acetyl acetone and ethyl acetoacetate gave 13, 14 and 15 , respectively. Condensation of 12 with isatin afforded 2‐[N‐(2‐oxo‐1,2‐dihydroindol‐3‐ylidene)hydrazino]‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 16 ). 2‐(4‐Oxo‐3‐phenylamino‐3,4‐dihydroquinazolin‐2‐ylamino)isoindole‐1,3‐dione ( 17 ) was synthesized by the reaction of 12 with phthalic anhydride. All isolated products were confirmed by their ir, 1H nmr, 13C nmr and mass spectra.  相似文献   

15.
This paper presents the synthesis of a series of 5,6‐dihydro‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ring system derivatives with a [1,2,3]triazole ring bonded in position 2. The procedure is based on cycloaddition of substituted alkyl azides to the terminal triple bond of 5,6‐dihydro‐2‐ethynyl‐9‐methyl‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 4 ). This cycloaddition produced two regioisomers ?5,6‐dihydro‐9‐methyl‐2‐(1‐substituted‐1H‐[1,2,3]triazol‐5‐yl)‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 7 ) and 2‐(1‐substituted‐1H‐[1,2,3]triazol‐4‐yl) derivative 8 . The required 2‐ethynyl deriva tive 4 was obtained from the starting 2‐unsubstituted compound 1 by bromination to yield the 2‐bromo derivative 2 , which was converted by Sonogashira reaction to trimethylsilylethyne 3 and finally, the protective trimethylsilyl group was removed by hydrolysis.  相似文献   

16.
3‐(Bromoacetyl)‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one was synthesized by the reaction of dehydroacetic acid (DHAA) with bromine in glacial acetic acid. Novel heterocyclic products were synthesized from the reaction of bromo‐DHAA with alkanediamines, phenylhydrazines, ortho‐phenylenediamines, and ortho‐aminobenzenethiol. The obtained new products 3‐(2‐N‐substituted‐acetyl)‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐ones, 4‐hydroxy‐3‐[1‐hydroxy‐2‐(2‐phenylhydrazinyl)vinyl]‐6‐methyl‐2H‐pyran‐2‐one, 1‐(2,4‐dinitrophenyl)‐7‐methyl‐2,3‐dihydro‐1H‐pyrano[4,3‐c]pyridazine‐4,5‐dione, 3‐(3,4‐dihydroquinoxalin‐2‐yl)‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one/3‐(3,4‐dihydroquinoxalin‐2‐yl)‐6‐methyl‐2H‐pyran‐2,4(3H)‐dione, 6‐methyl‐3‐(3,4‐dihydroquinoxalin‐2‐yl)‐2H‐pyran‐2,4(3H)‐dione, and (E)‐3‐(2H‐benzo[b][1,4]thiazin‐3(4H)‐ylidene)‐6‐methyl‐2H‐pyran‐2,4(3H)‐dione were fully characterized by IR, 1H and 13C NMR, and mass spectra. J. Heterocyclic Chem., 2011.  相似文献   

17.
《中国化学》2017,35(9):1469-1473
A phosphine‐catalyzed [4 + 2] annulation of α ‐substituted allenoate with exocyclic alkene moiety of oxindoles or indan‐1,3‐diones has been developed. Thus, under the catalysis of PPh3 (20 mol%), a series of spirooxindole‐ or spiroindan‐1,3‐dione‐cyclohexenes have been obtained in moderate to excellent yields and regioselectivity from the annulations of α ‐methyl allenoates with 3‐methyleneoxindoles or 2‐methyleneindan‐1,3‐diones. This method offers an easy access to structurally novel spirocyclohexenes.  相似文献   

18.
In this work, six novel axially unfixed biaryl‐based water‐compatible bifunctional organocatalysts were designed and synthesized for the organocatalytic access to a variety of 3‐alkyl‐3‐hydroxy‐2‐oxindole derivatives via aldol reactions in water. Organocatalyzed by 5a , the direct aldol reactions of isatins with enolisable ketones underwent readily in water, furnishing the structurally diverse 3‐alkyl‐3‐hydroxy‐2‐oxindoles in various stereoselectivities (up to>99% dr and >99% ee). Moreover, a plausible transition state of the conducted aldol reactions was hypothesized to shed light on the observed stereoselectivities of the obtained 3‐alkyl‐3‐hydroxy‐2‐oxindoles.  相似文献   

19.
The photochemical reactions of 2‐substituted N‐(2‐halogenoalkanoyl) derivatives 1 of anilines and 5 of cyclic amines are described. Under irradiation, 2‐bromo‐2‐methylpropananilides 1a – e undergo exclusively dehydrobromination to give N‐aryl‐2‐methylprop‐2‐enamides (=methacrylanilides) 3a – e (Scheme 1 and Table 1). On irradiation of N‐alkyl‐ and N‐phenyl‐substituted 2‐bromo‐2‐methylpropananilides 1f – m , cyclization products, i.e. 1,3‐dihydro‐2H‐indol‐2‐ones (=oxindoles) 2f – m and 3,4‐dihydroquinolin‐2(1H)‐ones (=dihydrocarbostyrils) 4f – m , are obtained, besides 3f – m . On the other hand, irradiation of N‐methyl‐substituted 2‐chloro‐2‐phenylacetanilides 1o – q and 2‐chloroacetanilide 1r gives oxindoles 2o – r as the sole product, but in low yields (Scheme 3 and Table 2). The photocyclization of the corresponding N‐phenyl derivatives 1s – v to oxindoles 2s – v proceeds smoothly. A plausible mechanism for the formation of the photoproducts is proposed (Scheme 4). Irradiation of N‐(2‐halogenoalkanoyl) derivatives of cyclic amines 5a – c yields the cyclization products, i.e. five‐membered lactams 6a , b , and/or dehydrohalogenation products 7a , c and their cyclization products 8a , c , depending on the ring size of the amines (Scheme 5 and Table 3).  相似文献   

20.
A variety of 3″,5″‐diaryl‐3″H,4′H‐dispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]thiadiazol]‐4′‐ones 3a‐c were synthesized regioselectively through the reaction of 4′H,5H‐trispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]oxadithiino[5,6‐c]chromene‐5″,1″′‐cyclohexan]‐4′‐one ( 1 ) with nitrilimines (generated in situ via triethylamine dehydrohalogenation of the corresponding hydrazonoyl chlorides 2a‐c ) in refluxing dry toluene. Single crystal X‐ray diffraction studies of 3a,b add support for the established structure. Similarly, 3′,5′‐diaryl‐2,2‐dimethyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5a‐c were obtained in a regioselective manner through the reaction of 2,2,5′,5′‐tetramethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino[5,6‐c]chromen]‐4‐one ( 4a ) with nitrilimines under similar reaction conditions. On the other hand, reaction of 2,5′‐diethyl‐2,5′‐dimethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino‐[5,6‐c]chromen]‐4‐one ( 4b ) with nitrilimines in refluxing dry toluene afforded the corresponding 3′,5′‐diaryl‐2‐ethyl‐2‐methyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5d‐f as two unisolable diastereoisomeric forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号