首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A novel series of 4‐(4‐(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)phenyl)‐2‐substitutedthiazole derivatives ( 8a‐l) have been synthesized by [3 + 2] cycloaddition reaction of 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole with substituted benzyl azide in aqueous DMF. Starting compounds 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole ( 6a‐d ) were synthesized by reaction of 4‐(2‐substitutedthiazol‐4‐yl)benzaldehyde with Ohira‐Bestmann reagent in methanol. The structures of these novel triazole‐thiazole clubbed derivatives were confirmed by the spectral analysis. The title compounds ( 8a‐l ) were tested for antimycobacterial activity against Mycobacterium tuberculosis H37Ra active and dormant (MTB, ATCC 25177) and antimicrobial activity against standard Gram‐positive bacteria, Staphylococcus aureus (NCIM 2602) and Bacillus subtilis (NCIM 2162), and Gram‐negative bacteria, Escherichia coli (NCIM 2576) and Pseudomonas flurescence (NCIM 2059). Compounds 8a , 8b , 8c , and 8h reported good activity against B subtilis, compounds 8a , 8b , and 8c showed good activity against S aureus, and compound 8b showed good activity against dormant M tuberculosis H37Rv strain. Compounds 8b and 8c found more potent against Gram positive and dormant M tuberculosis H37Rv strains. These novel triazole‐thiazole clubbed analogues found to be a capable leads for further optimization and development.  相似文献   

2.
3.
In the present study, a series of 20 indane‐based 1,5‐benzothiazepines ( 5a – t ) has been prepared derived from 3‐phenyl‐2,3‐dihydro‐1H ‐inden‐1‐one ( 1 ). All the synthesized 1,5‐benzothiazepines ( 5a – t ) were screened for their in vitro antimicrobial activities against four bacteria [Bacillus subtilis (MTCC 441), Staphylococcus epidermidis (MTCC 6880), Escherichia coli (MTCC 1652), and Pseudomonas aeruginosa (MTCC 424)] and two fungi [Candida albicans (MTCC 227) and Aspergillus niger (MTCC 8189)]. Among all the tested derivatives, 5n and 5o against E. coli displayed more inhibitory activity than that of the reference drug, ciprofloxacin, while the derivatives 5c , 5m – o , 5s , and 5t against C. albicans , and 5d , 5e , 5n , 5o , 5s , and 5t against A. niger were found to be more potent than the standard drug, that is, fluconazole.  相似文献   

4.
A series of 21 2‐(4‐(hydroxyalkyl)‐1H ‐1,2,3‐triazol‐1‐yl)‐N ‐substituted propanamides (1,4‐disubstituted 1,2,3‐triazoles having amide linkage and hydroxyl group) have been synthesized from click reaction between terminal alkyne and 2‐azido‐N ‐substituted propanamide (generated in situ from reaction of 2‐bromo‐N ‐substituted propanamide and sodium azide) and characterized by FTIR, 1H NMR, 13C NMR spectroscopy, and HRMS. All the newly synthesized triazoles were tested in vitro for antimicrobial activity against four bacterial cultures – Escherichia coli , Enterobacter aerogenes , Klebsiella pneumoniae , and Staphylococcus aureus – and two fungal cultures – Candida albicans and Aspergillus niger . The synthesized 1,4‐disubstituted 1,2,3‐triazoles displayed moderate to good antimicrobial potential against the tested strains.  相似文献   

5.
A novel compound series of tri‐substituted imidazole/thiazole derivatives ( 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i ) were prepared by Radziszewski reaction. Benzil ( 1 ), ammonium acetate or ammonium thiocynate, and 1‐phenyl‐3‐(p‐substituted phenyl)‐1H‐pyrazole‐4‐carbaldehyde ( 2a , 2b , 2c , 2d , 2e , 2f , 2g ) were reacted to give the desired product. Synthesized compounds were characterized by elemental analysis (CHNS) and spectral analysis (FTIR, 1H and 13C FT NMR, and LC–MS). All the compounds were screened for their antibacterial, antifungal, and antimycobacterial activities. Antimicrobial activity was evaluated against some bacterial strains such as Escherichia coli (MTCC 443), Pseudomonas aeruginosa (MTCC 1688), Staphylococcus aureus (MTCC 96), Streptococcus pyogenes (MTCC 442), and the H37Rv strain of Mycobacterium tuberculosis, and the fungal activity was observed against strains, for example, Candida albicans (MTCC 227), Aspergillus niger (MTCC 282), and Aspergillus clavatus (MTCC 1323). All the synthesized compounds were found to possess moderate to excellent activity against the above selected strains.  相似文献   

6.
Imidazo[4,5‐c ]pyrazole derivatives ( 3a–f , 4a–f , and 5a–f ) were efficiently synthesized by one‐pot three‐component reactions using CeO2–MgO as the catalyst. The synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectroscopic analyses. The in vitro antimicrobial activity of the synthesized compounds against various bacterial and fungal strains was screened. Compound 3b was highly active [minimum inhibitory concentration (MIC): 0.5 μg/mL] against Gram‐positive Staphylococcus aureus , and compounds 3b , 3f , 4d , and 4e were highly active (MIC: 0.5, 2, 2, and 0.5 μg/mL, respectively) against Gram‐negative Pseudomonas aeruginosa and Klebsiella pneumoniae , relative to standard ciprofloxacin in the antibacterial activity screening. Compounds 3b and 4f were highly active (MIC: 4 and 0.5 μg/mL, respectively) against Aspergillus fumigatus and Microsporum audouinii in the antifungal activity screening compared with the clotrimazole standard.  相似文献   

7.
Some novel [1,2,4]triazolo[3,4‐b][1,3,4]thiadiazole derivatives were synthesized from aryl acetic acids. All the synthesized derivatives were selected for the screening of antibacterial potential against Gram‐positive bacteria [Staphylococcus aureus (MTCC 3160) and Micrococcus luteus (MTCC 1538)] and Gram‐negative bacteria [Escherichia coli (MTCC 1652) and Pseudomonas aeruginosa (MTCC 424)] and antifungal potential against Aspergillus niger (MTCC 8652) and Candida albicans (MTCC 227), and free radical scavenging activity through 2,2‐diphenyl‐2‐picrylhydrazyl hydrate method. The compounds TH‐4 , TH‐13 , and TH‐19 were found to be more potent antimicrobial agents compared to standard drugs. The compounds TH‐3 , TH‐9 , and TH‐18 also showed significant antimicrobial activity. The compound TH‐13 showed antioxidant activity with IC50 value better than the standard compound. The structures of all the synthesized compounds were confirmed by Fourier transform infrared, 1H‐NMR, liquid chromatography–mass spectrometry, and CHN analyzer.  相似文献   

8.
Synthesis of a series of new 4‐substituted‐3‐aryl‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazoles ( 2a , 2b , 2c , 2d , 2e , 2f , 2g , 3a , 3b , 3c , 3d , 3e , 3f , 3g , and 4a , 4b , 4c , 4d , 4e , 4f , 4g ) is described. All the synthesized compounds were evaluated in vitro for their antibacterial activity against two gram‐positive and two gram‐negative bacteria, namely, Bacillus subtilis (MTCC 8509), Bacillus stearothermophilus (MTCC 8508), Escherichia coli (MTCC 51), and Pseudomonas putida (MTCC 121), and their activity was compared with two commercial antibiotics, streptomycin and chloramphenicol. Two compounds, namely, 3‐(4‐anisyl)‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2b ) and 3‐(2‐thienyl)‐1‐(2,6‐dimethyl pyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2g ) were found to be equipotent to streptomycin and chloramphenicol against gram‐negative bacteria, E. coli having minimum inhibitory concentration (MIC) value = 4 μg/mL. Compounds 4b and 4d also displayed good activity against E. coli with MIC = 8 μg/mL. J. Heterocyclic Chem., (2011).  相似文献   

9.
A series of 2‐(2‐(2‐chlorophenyl)quinoline‐4‐carbonyl)‐N‐substituted hydrazinecarbothioamide derivatives were synthesized by facile and efficient conventional method. The structures of the compounds were elucidated with the aid of an elemental analysis, IR, ESI‐MS, 1H‐NMR, and 13C‐NMR spectral data. The synthesized compounds were evaluated for their in vitro antibacterial, antifungal, antimalarial, and antituberculosis activity against standard drugs. The bacterial studies were determined against gram‐positive and negative bacteria. These compounds were found to a broad spectrum of activity against the screened bacteria, but poor activity was observed against Pseudomonas aeruginosa and Escherichia coli. Compounds 8d , 8f , 8i , 8l , and 8n showed the potent activity against Staphylococcus aureus. Compounds 8d , 8g , 8k , 8l , and 8q show the potent activity against antimalarial as compared with the standard drugs Chloroquine, Quinine and compounds 8h , 8n , and 8o shows mild activity against H37Rv strain. Molecular docking revealed that synthesized derivatives and target proteins were actively involved in a binding pattern and had a significant corelation with biological activity. We have also performed a molecular dynamics and ADME‐Tox parameters for the synthesized compounds.  相似文献   

10.
《中国化学会会志》2017,64(1):36-42
Substituted‐1,2,4‐triazines were conveniently synthesized in one pot by the cyclization of arylnitroformaldehyde hydrazone derivatives 1 and 5 with different primary amines in ~37% formaldehyde solution. The synthesized compounds were arranged into novel mono‐, bis‐, and tris‐nitro‐1,2,4‐triazine derivatives 2 , 3 , 4 , 6 , and 7 . The antibacterial and antifungal activity of the synthesized compounds were screened against bacterial strains Escherichia coli (as Gram − ve) and Staphylococcus aureus (as Gram + ve), and fungal strains Aspergillus flavus and Candida albicans . All the synthesized compounds exhibit various patterns of inhibitory activity on the two pathogenic bacterial strains. However, the same compounds showed no activity against the tested fungal strains.  相似文献   

11.
A series of compounds, viz. 2‐(3‐(4‐aryl)‐1‐isonicotinoyl‐4,5‐dihydro‐1H‐pyrazol‐4‐yl)‐3‐phenylthiazolidin‐4‐one 4 ( a – n ), have been synthesized by reaction of 3 ( a – n ) with thioglycolic acid in the presence of zinc chloride. Compounds 3 ( a – n ) have been synthesized by amination of formylated pyrazoles 2 ( A – B ), which were synthesized by formylation of 1 ( A – B ) by Vilsmeier–Haack reagent (POCl3/DMF). Compounds 1 ( A – B ) were synthesized by condensation of hydrazide and substituted acetophenones under conventional method and microwave irradiation method. These compounds were identified on the basis of melting point range, Rf values, infrared, 1H NMR, and mass spectral analysis. These compounds were evaluated for their in vitro antimicrobial activity, and their minimum inhibitory concentration was determined. Among them, compound 4b and compound 4l possess appreciable antimicrobial and antifungal activities. Antibacterial activity results showed that compounds containing electron‐withdrawing groups were more active than compounds containing electron‐releasing groups.  相似文献   

12.
合成了10个未见文献报道的1-(5-(2-氯苯基)-3-(2,4-二氯苯基)-4,5-二氢-N-吡唑肟酯类衍生物,并经过元素分析、HRMS、核磁共振氢谱对其结构进行了表征。对新合成的化合物进行了初步抗Bacillus subtilis, Staphylococcus aureus, Escherichia coli 和 Pseudomonas aeruginosa生物活性测试,结果表明:化合物7c 和7f对供试病菌具有较好的体外杀灭活性,其MIC值达到1.562 μg/mL;化合物7c ,7d和7f 具有中等的抑制DNA回旋酶活性(IC50 = 1.6~2.5 µg/mL)。在生物活性结果的基础上对系列化合物的构效关系进行了初步的探讨。  相似文献   

13.
1,3‐Dipolar cycloaddition reactions of N‐cyclohexyl maleimide ( 1 ) with azomethine N‐oxide ( 2 ) have afforded novel isoxazolidine ( 3 ) in excellent yield. Their structures have been characterized from their IR, 1H‐NMR, 13C‐NMR, 1H,1H‐COSY, MS(ESI), and elemental analysis techniques. In vitro antibacterial activity of the synthesized compounds were investigated against a representative panel of pathogenic strains specifically two Gram‐positive bacteria (Staphylococcus aureus and Streptococcus pyogenes ) and two Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli ) using agar‐well diffusion assay. Some of the compounds ( 3a , 3k , 3n , and 3o ) exhibited promising antibacterial activities. All the synthesized compounds have also been screened for their antioxidant activities and were found to be significantly active.  相似文献   

14.
A series of new 4,6‐diaryl‐4,5‐dihydro‐3‐hydroxy‐2H‐indazoles 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k were synthesized by the cyclization of ethyl 2‐oxo‐4,6‐diarylcyclohex‐3‐ene carboxylates 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j , 4k . The compounds were characterized by IR, 1H NMR, 13C NMR, 2D NMR, and elemental analysis. The synthesized compounds were evaluated for in vitro antibacterial and antifungal activities against Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger, Aspergillus flavus, and Rhizopus sp. Most of the compounds exhibited good activity against the tested organisms. J. Heterocyclic Chem.,, (2012).  相似文献   

15.
A series of 2-[4-cyano-(3-trifluoromethyl)phenyl amino)]-4-(4-quinoline/coumarin-4-yloxy)-6-(fluoropiperazinyl)-s-triazines has been synthesized by a simple and efficient synthetic protocol. The antimicrobial activity of the compounds was studied against several bacteria (Staphylococcus aureus MTCC 96, Bacillus cereus MTCC 619, Escherichia coli MTCC 739, Pseudomonas aeruginosa MTCC 741, Klebsiella pneumoniae MTCC 109, Salmonella typhi MTCC 733, Proteus vulgaris MTCC 1771, Shigella flexneria MTCC 1457) and fungi (Aspergillus niger MTCC 282, Aspergillus fumigatus MTCC 343, Aspergillus clavatus MTCC 1323, Candida albicans MTCC 183) using paper disc diffusion technique and agar streak dilution method. Newly synthesized compounds were also tested for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv using BACTEC MGIT and Lowenstein-Jensen MIC method.  相似文献   

16.
A convenient one pot synthesis of 20 (1‐(2‐(benzyloxy)‐2‐oxoethyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl benzoate analogues ( 5a – 5t ) with ester functionality was carried out via Cu(I) catalyzed click reaction between prop‐2‐yn‐1‐yl benzoates and benzyl 2‐azidoacetates. The structure of synthesized triazoles were explicated by various spectral techniques like FT‐IR, 1H NMR, 13C NMR, and high‐resolution mass spectrometry and evaluated for in vitro antimicrobial potential against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Candida albicans, and Aspergillus niger. Most of synthesized triazole derivatives exhibited average to excellent activity against tested microbial strains.  相似文献   

17.
A series of novel N‐((l‐benzyl‐lH‐l,2,3‐triazol‐5‐yl) methyl)‐4‐(6‐methoxy benzo[d ]thiazol‐2‐yl)‐2‐nitrobenzamide derivatives were prepared from 4‐(6‐methoxybenzo[d ]thiazol‐2‐yl)‐2‐nitro‐N‐(prop‐2‐ynyl) benzamide with benzyl azides by using click reaction (copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction) in the presence of CuSO4.5H2O and sodium ascaorbate. All the newly synthesized compounds were evaluated further in vitro antimicrobial activity against Gram‐positive bacteria (Staphylococcus aureus and Bacillus subtillis ), Gram‐negative bacteria (Echerichia coli and Pseudomonas aeuroginosa ), and fungi (Aspergillus niger and Aspergillusfumigatus ) strains. The new compounds were characterized based on spectroscopic evidence. Among them compounds 10a , 10h , and 10i were showed promising activity when compared with standard drugs Ciprofloxacin and Miconazole.  相似文献   

18.
The novel 1,4‐diphenethyl‐1,2,3,4‐tetrahydro‐7‐methoxyquinoxalin‐6‐carbaldehyde was synthesized by reductive alkylation of 6‐methoxy quinoxaline with phenyl acetic acid and was further subjected to Knoevenagel condensation with various active methylene compounds to synthesize novel styryl colorants. Photophysical properties of styryl colorants were studied using UV–visible and fluorescence spectroscopy. These colorants displayed orange to violet hue and showed fluorescence emission maxima in the region of 560–640 nm, and displayed a large Stokes shift (85–104 nm). Compounds were subjected to thermogravimetric analysis which showed excellent stability up to 310°C. These styryl compounds were evaluated for their antimicrobial study as antifungal against Candida albicans C. albicans and Aspergillus niger and antibacterial against Escherichia coli and Staphylococcus aureus. The results revealed good antimicrobial activity against tested organisms. The synthesized chromophores were characterized using elemental analysis, FTIR, 13C‐NMR and 1H‐NMR spectroscopy and mass spectrometry.  相似文献   

19.
A new class of 1H ‐1,2,3‐triazole‐tethered 8‐OMe ciprofloxacin (8‐OMe CPFX) isatin hybrids 5a–l was designed, synthesized and screened for their in vitro anti‐mycobacterial activities against Mycobacterium tuberculosis H37Rv and multi‐drug‐resistant tuberculosis (MDR‐TB). All targets (minimum inhibitory concentration (MIC): 0.20–8.0 μg/mL) exhibited promising inhibitory activity against MTB H37Rv and MDR‐TB. Among them, conjugate 5h (MIC: 0.20 μg/mL), was 2–16 times more potent in vitro than the references CPFX (MIC: 3.12 μg/mL), 8‐OMe CPFX (MIC: 1.56 μg/mL) and RIF (MIC: 0.39 μg/mL) against MTB H37Rv. The most potent hybrid 5l (MIC: 0.25 μg/mL) was 8–256 times more active than the three references (MIC: 2.0–64 μg/mL) against MDR‐TB. Both of them warrant further investigations.  相似文献   

20.
Isatin and coumarin derivatives with potential anti‐tubercular activity, while (thio)semicarbazide/oxime and 1H‐1,2,3‐triazole moieties exhibited favorable properties such as hydrogen bonding and/or metal chelation capability, so integration of the four pharmacophores into one molecule may provide more effective anti‐tubercular candidates. Based on the consideration earlier, 12 isatin‐(thio)semicarbazide/oxime‐1H‐1,2,3‐triazole‐coumarin hybrids 8a–l were designed, synthesized, and evaluated for their in vitro anti‐mycobacterial activities against M. tuberculosis (MTB) H37Rv and MDR‐TB. The results showed that all the hybrids (MIC: 50–>200 μg/mL) exhibited weak to moderate inhibitory activity against MTB H37Rv and MDR‐TB, which were far less potent than the references isoniazid (MIC: 0.05 μg/mL) and rifampicin (MIC: 0.39 μg/mL) against MTB H37Rv. The most active hybrid 8h (MIC: 50 μg/mL) was comparable with rifampicin (MIC: 32 μg/mL) and more active than isoniazid (MIC: >128 μg/mL) against MDR‐TB, could be act as a lead for further optimization. Moreover, the enriched structure–activity relationship paved the way to the further rational development of this kind of hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号