首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A novel amperometric choline biosensor has been fabricated with choline oxidase (ChOx) immobilized by the sol-gel method on the surface of multi-walled carbon nanotubes (MWCNT) modified platinum electrode to improve the sensitivity and the anti-interferential property of the sensor. By analyzing the electrocatalytic activity of the modified electrode by MWCNT, it was found that MWCNT could not only improve the current response to H2O2 but also decrease the electrocatalytic potential. The effects of experimental variables such as the buffer solutions, pH and the amount of loading enzyme were investigated for the optimum analytical performance. This sensor shows sensitive determination of choline with a linear range from 5.0 × 10−6 to 1.0 × 10−4 mol/L when the operating pH and potential are 7.2 and 0.15 V, respectively. The detection limit of choline was 5.0 × 10−7 mol/L. Selectivity for choline was 9.48 μA·(mmol/L)−1. The biosensor exhibits excellent anti-interferential property and good stability, retaining 85% of its original current value even after a month. It has been applied to the determination of choline in human serum. Translated from Chinese Journal of Analytical Chemistry, 2006, 34(7): 910–914 (in Chinese)  相似文献   

2.
在碳纳米管(CNTs)和K3Fe(CN)6修饰的铂电极上吸附固定胆碱氧化酶,以鲁米诺为发光试剂,研制了胆碱电化学发光(ECL)生物传感器。CNTs可有效提高电极表面的电荷传输能力、提高电极表面的生物相容性和对酶分子的固载能力;K3Fe(CN)6对酶活性具有激活作用,同时对H2O2增敏的鲁米诺ECL有增强作用,均有利于提高传感器的检测灵敏度。研究表明,将CNTs分散液与K3Fe(CN)6混合,滴涂修饰在Pt电极上,吸附固定胆碱氧化酶,制备传感器。此传感器在含有8×10-6mol/L鲁米诺的磷酸盐缓冲液(pH7.4)、30℃条件下产生的ECL强度与胆碱浓度在1×10-7~4×10-3mol/L范围内呈线性关系,相关系数为0.994,检出限为1.2×10-8 mol/L。此生物传感器应用于鼠血样中胆碱的测定,测得结果为2.68 mg/L,平均回收率为101.1%。传感器具有快速、稳定和重现性好等特点,有望应用于常规分析。  相似文献   

3.
This work describes the development of a biosensor for paracetamol (PAR) determination based on a glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNT) and laccase enzyme (LAC), which was immobilized by means of covalent crosslinking using glutaraldehyde. Voltammetric investigations were carried out by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The biosensor was characterized by Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FT‐IR). The results showed that the use of MWCNT/LAC composite increased the sensor sensitivity, compared to bare glassy carbon electrode. Factors affecting the voltammetric signals such as pH, ionic strength, scan rate and interferents were assessed. Linear range, limit of detection (LOD) and limit of quantitation (LOQ) obtained were 10–320 μmol L?1, 7 μmol L?1 and 10 μmol L? 1, respectively. The developed biosensor was successfully applied to PAR determination in urine and pharmaceutical formulations samples, with recovery varying from 99.96 to 106.20 % in urine samples and a relative standard deviation less than 1.04 % for PAR determination in pharmaceutical formulations. Therefore, the MWCNT‐LAC/GCE exhibits excellent sensitivity and can be used to PAR determination as a viable alternative in clinical analyzes and quality control of pharmaceutical formulations, through a simple, fast and inexpensive methodology.  相似文献   

4.
We report a rapid and simple method for sensing estradiol by electro‐oxidation on a multi‐walled carbon nanotube (MWCNT) and gold nanoparticle (AuNP) modified glassy carbon electrode (GCE). Compared with a bare GCE, AuNP/GCE and MWCNT/GCE, the composite modified GCE shows an enhanced response to estradiol in 0.1 M phosphate buffer solution. Experimental parameters, including pH and accumulation time for estradiol determination were optimised at AuNP/MWCNT/GCE. A pH of 7.0 was found to be optimum pH with an accumulation time of 5 minutes. Estradiol was determined by linear sweep voltammetry over a dynamic range up to 20 %mol L?1 and the limit of detection was estimated to be 7.0×10?8 mol L?1. The sensor was successfully applied to estradiol determination in tap water and waste water.  相似文献   

5.
在碳纳米管(CNTs)和K3Fe(CN)6修饰的铂电极上吸附固定胆碱氧化酶,以鲁米诺为发光试剂,研制了胆碱电化学发光(ECL)生物传感器.CNTs可有效提高电极表面的电荷传输能力、提高电极表面的生物相容性和对酶分子的固载能力;K3Fe(CN)6对酶活性具有激活作用,同时对H2O2增敏的鲁米诺ECL有增强作用,均有利于提...  相似文献   

6.
《Electroanalysis》2017,29(5):1368-1376
In this work, a photoamperometric glucose biosensor based on glucose oxidase (GODx) was developed in flow injection analysis (FIA) system using ZnS‐CdS quantum dot (QD) modified multiwalled carbon nanotube/glassy carbon electrode (ZnS‐CdS/MWCNT/GCE). Cyclic voltammograms of the proposed electrode (GODx/ZnS‐CdS/MWCNT/GCE) showed a pair of well‐defined reversible redox peak attributing that direct electron transfer between the protein and electrode. The current of the reduction peak became more cathodic in the presence of O2 due to the electrocatalytic activity of the electrode towards the reduction of dissolved O2, but reduction current shifted to a less negative value upon addition of glucose in the solution. The obtained CV currents were affected by the irradiation of the electrode surface. Thus, the photoelectrochemical biosensing of glucose in the FIA system was studied by monitoring of the changes in the electrocatalyzed reduction peak current of dissolved O2 at the proposed electrode dependent on glucose concentration. The proposed photoelectrochemical FIA method has a linear response to glucose ranging from of 0.01 to 1.0 mM with detection limit of 3.0 μM under optimized conditions. Photoelectrochemical biosensor was successfully fabricated in FIA system for selective, sensitive and repeatable detection of glucose and has been satisfactorily applied to determination of glucose in real sample.  相似文献   

7.
Present study describes the synthesis of mixed oxide films of manganese and vanadium by electrochemical pulsed deposition technique on a glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNT). The film was further decorated with gold nanoparticles to enhance the reduction signal of dissolved oxygen in pH 5.17 acetate buffer solution. All of the electrochemical synthesized modified electrodes have been characterized with Scanning electron microscopy(SEM), High‐resolution transmission electron microscopy (HRTEM), X‐Ray photoelectron spectroscopy (XPS), X‐Ray diffraction (XRD) techniques. The electrode obtained (AuNPs/MnOx?VOx/CNT/GCE) was utilized as a platform for glucose biosensor where the glucose oxidase enzyme was immobilized on the composite film with the aid of chitosan and an ionic liquid. The electrochemical performance of the biosensor was investigated by cyclic voltammetry and the relative parameters have been optimized by amperometric measurements in pH 5.17 acetate buffer solution. The developed biosensor exhibited a linear range for glucose between 0.1–1.0 mM and the limit of detection was calculated as 0.02 mM.  相似文献   

8.
《Electroanalysis》2005,17(10):857-861
The carbon nanotubes decorated nanoplatinum (CNT‐Pt) were prepared using a chemical reduction method and a novel base electrode was constructed by intercalating CNT‐Pt on the surface of a waxed graphite electrode. The results showed that the nano‐particles of platinum at a waxed graphite electrode exhibits high catalytic activity for the reduction of hydrogen peroxide. The cholesterol oxidase (ChOx), chosen as a model enzyme, was immobilized with sol‐gel on the CNT‐Pt base electrode to construct a biosensor. The current response of the biosensor for cholesterol was very rapid (<20 s). The linear range for cholesterol measurement was 4.0×10?6 mol/L ?1.0×10?4 mol/L with a detection limit of 1.4×10?6 mol/L. The experiments also showed that the ChOx/sol‐gel/CNT‐Pt biosensor was sensitive and stable in detecting cholesterol in serum samples.  相似文献   

9.
Carbon nanotube enhanced electrochemically activated glassy carbon electrode (GCE) has been prepared and applied for sensitive electrochemical determination of DNA and DNA bases. The results indicate that the relative activation could efficiently enhance electron transfer at the pretreated GCE so that this carbon nanotube activated glassy carbon electrode could provide relatively low detection limit with good reproducibility for the respective biomolecular determination. Besides, greatly enhanced sensitivity could be obtained for the relevant electrochemical detection of the bio‐recognition process including DNA biosensing by using the carbon nanotube activated GCE. This approach provided a detection limit of 7.5 nM for guanine and 150 ng/mL for acid denatured DNA. These observations suggest that the carbon nanotube activated glassy carbon electrode could be utilized as a very sensitive and stable biosensor for some specific biological process.  相似文献   

10.
A simple, selective and stable biosensor with the enzymatic reactor based on choline oxidase (ChOx) was developed and applied for the determination of choline (Ch) in flow injection analysis with amperometric detection. The enzyme ChOx was covalently immobilized with glutaraldehyde to mesoporous silica powder (SBA‐15) previously covered by NH2‐groups. This powder was found as an optimal filling of the reactor. The detection of Ch is based on amperometric monitoring of consumed oxygen during the enzymatic reaction, which is directly proportional to Ch concentration. Two arrangements of an electrolytic cell in FIA, namely wall‐jet cell with working silver solid amalgam electrode covered by mercury film and flow‐through cell with tubular detector of polished silver solid amalgam were compared. The experimental parameters affecting the sensitivity and stability of the biosensor (i. e. pH of the carrier solution, volume of reactor, amount of the immobilized enzyme, the detection potential, flow rate, etc.) were optimized. Under the optimized conditions, the limit of detection was found to be 9.0×10?6 mol L?1. The Michaelis‐Menten constant for covalently immobilized ChOx on SBA‐15 was calculated. The proposed amperometric biosensor with the developed ChOx‐based reactor exhibits good repeatability, reproducibility, long‐term stability, and reusability. Its efficiency has been confirmed by the successful application for the determination of Ch in two commercial pharmaceuticals.  相似文献   

11.
李建平  彭图治 《中国化学》2002,20(10):1038-1043
IntroductionCholesterolisaveryimportantbioactivecompound .Numerousattemptshavebeenmadetocreatesensitive ,selective ,reliableandlowcostcholesterolsensorsduringthelastdecadebecauseofthesignificanceinclinicaldi agnosisofcoronaryheartdiseases ,arterioscleros…  相似文献   

12.
A novel metal composite material based on zirconium dioxide decorated gold nanoparticles (ZrO2@AuNPs), copper (I) oxide at manganese (IV) oxide (Cu2O@MnO2) and immobilized choline oxidase (ChOx) onto a glassy carbon electrode (GCE) (ChOx/Cu2O@MnO2-ZrO2@AuNPs/GCE) has been developed for enhancing the electro-catalytic property, sensitivity and stability of the amperometric choline biosensor. The ChOx/Cu2O@MnO2-ZrO2@AuNPs/GCE displayed an excellent electrocatalytic response to the oxidation of the byproduct H2O2 from the choline catalyzed reaction, which exhibited a charge transfer rate constant (Ks) of 0.97 s−1, a diffusion coefficient value (D) of 4.50×10−6 cm2 s−1, an electroactive surface area (Ae) of 0.97 cm2 and a surface concentration (γ) of 0.54×10−8 mol cm−2. The modified electrode also provided a wide linear range of choline concentration from 0.5 to 1,000.0 μM with good sensitivity (97.4 μA cm−2 mM−1) and low detection limit (0.3 μM). The apparent Michaelis-Menten constant was found to be 0.08 mM with Imax of 0.67 μA. This choline biosensor presented high repeatability (%RSD=2.9, n=5), excellent reproducibility (%RSD=2.9, n=5), long time of use (n=28 with %I>50.0 %) and good selectivity without interfering effects from possible electroactive species such as ascorbic acid, aspirin, amoxicillin, caffeine, dopamine, glucose, sucrose and uric acid. This optimal method was successfully applied for choline measurement in prepared human blood samples which demonstrated accurate and excellent reliability in the recovery range from 96.7 to 102.0 %.  相似文献   

13.
Based on hemin‐MWCNTs nanocomposite and hemin‐catalyzed luminol‐H2O2 reaction, a sensitive electrogenerated chemiluminescence (ECL) cholesterol biosensor was proposed in this paper. Firstly, hemin‐MWCNTs was prepared via π–π stacking and modified on the surface of GCE. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the modified electrode to achieve a cholesterol biosensor. Hemin‐MWCNTs nanocomposite provided the electrode with a large surface area to load ChOx, and endowed the nanostructured interface on the electrode surface to enhance the performance of biosensor. The biosensor responded to cholesterol in the linear range from 0.3 µM to 1.2 mM with a detection limit of 0.1 µM (S/N=3).  相似文献   

14.
A glassy carbon electrode (GCE) is modified with platinum nanoparticle (PtNPs) decorated multiwalled carbon nanotube (MWCNT). The modified electrode is applied for the determination of ceftriaxone (CFX) in the presence of lidocaine. Different methods were used to characterize the surface morphology of the modified electrode. The electrochemical behavior of CFX was investigated at GCE, MWCNT/GCE and PtNPs/MWCNT/GCE. A factorial-based response-surface methodology was used to find out the optimum conditions with minimum number of experiments. Under the optimized conditions, oxidation peak currents increased linearly with CFX concentration in the range of 0.01–10.00 μM with a detection limit of 9.01 nM. The results prove that the modified electrode is also suitable for the determination of CFX in pharmaceutical and clinical preparations.  相似文献   

15.
An electrochemical method for the determination of tripelennamine hydrochloride (TPA) using cetyltrimethylammoniumbromide‐multiwalled carbon nanotubes modified glassy carbon electrode (MWCNT‐CTAB/GCE) was developed. Because of good electrical conductivity of MWCNT and catalytic behavior of CTAB, new electrode significantly enhances the sensitivity for the detection of TPA. Parameters such as amount of modifier suspension, scan rate, pH of measure solution, heterogeneous rate constant were investigated. The electrode exhibits a linear potential response in the range of 1.0×10?8 M to 3.0×10?6 M with a detection limit of 2.38× 10?9 M. The modified electrode was successfully applied to the determination of TPA in pharmaceutical and real samples.  相似文献   

16.
晋冠平  林祥钦 《中国化学》2005,23(6):673-677
A choline and L-glutamic acid mixed monolayer covalently modified glassy carbon electrode (Ch-Glu/GCE) was fabricated and characterized by X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). It provided an excellent example of mixed covalent monolayer modification of carbon electrodes with alkanol and amino acid, and also a facile means for altering the interfacial architecture. The Ch-Glu/GCE displayed good catalytic activity toward the oxidation of nitrite anions. Differential pulse voltammetry was used for determination of nitrite at the Ch-Glu/GCE. The Ch-Glu/GCE showed higher capability for restraint of pollutions than a simple Ch modified electrode or a simple Glu modified electrode.  相似文献   

17.
We report a novel composite electrode made of chitosan‐SiO2‐multiwall carbon nanotube (CHIT‐SiO2‐MWNT) composite coated on the indium‐tin oxide (ITO) glass substrate. Cholesterol oxidase (ChOx) was covalently immobilized on the CHIT‐SiO2‐MWNT/ITO electrode that resulted in a ChOx/CHIT‐SiO2‐MWNT/ITO cholesterolactive bioelectrode. The CHIT‐SiO2‐MWNT/ITO and ChOx/CHIT‐SiO2‐MWNT/ITO electrodes were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The influence of various parameters was investigated, including the applied potential, pH of the medium, and the concentration of the enzyme on the performance of the biosensor. The cholesterol bioelectrode exhibited a sensitivity of 3.4 nA/ mgdL?1 with a response time of five seconds. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode retained its original response after being stored for six months. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode showed a linear current response to the cholesterol concentration in the range of 50–650 mg/dL.  相似文献   

18.
《Electroanalysis》2004,16(20):1697-1703
An amperometric glucose biosensor based on multi‐walled carbon nanotube (MWCNT) modified glassy carbon electrode has been developed. MWCNT‐modified glassy carbon electrode was obtained by casting the electrode surface with multi‐walled carbon nanotube materials. Glucose oxidase was co‐immobilized on the MWCNT‐modified glassy carbon surface by electrochemical deposition of poly(o‐phenylenediamine) film. Enhanced catalytic electroreduction behavior of oxygen at MWCNT‐modified electrode surface was observed at a potential of ?0.40 V (vs. Ag|AgCl) in neutral medium. The steady‐state amperometric response to glucose was determined at a selected potential of ?0.30 V by means of the reduction of dissolved oxygen consumed by the enzymatic reaction. Common interferents such as ascorbic acid, 4‐acetamidophenol, and uric acid did not interfere in the glucose determination. The linear range for glucose determination extended to 2.0 mM and the detection limit was estimated to be about 0.03 mM.  相似文献   

19.
A novel nanostructured platform for pyruvate oxidase biosensors comprises poly(neutral red) (PNR) prepared by electropolymerization of NR in ethaline deep eutectic solvent (DES) with acid dopant, on a multiwalled carbon nanotubes (MWCNT) modified glassy carbon electrode (GCE). Characterization was by cyclic voltammetry and electrochemical impedance spectroscopy and morphology was examined by scanning electron microscopy. Ascorbate and H2O2 gave a better response at PNRDES/GCE than at PNRaq/GCE. Biosensors for pyruvate and phosphate, immobilizing pyruvate oxidase onto PNRDES/MWCNT/GCE enabled selective determination of pyruvate and phosphate, with micromolar limits of detection. Pyruvate was determined in onion samples and phosphate in water samples.  相似文献   

20.
We report the adsorptive voltammetric determination of nifedipine on multiwalled carbon nanotubes (MWCNT)‐modified glassy carbon electrode (GCE). Nifedipine was adsorbed on the MWCNT and then reduced using linear sweep and cyclic voltammetry (LSV and CV). Parameters such as pH and accumulation time were tested. The MWCNT‐modified GCE showed enhanced currents and good signal‐to‐noise characteristics in comparison with the bare GCE. Consecutive measurements with the modified electrode were highly repeatable and reproducible. The MWCNT/GCE was used for the determination of nifedipine and is recommended for quantitation in dissolution test studies. In this study we have tested normal and extended‐release pharmaceutical formulations of nifedipine using USP apparatus 2 and tracking the released drug in solution by the proposed voltammetric method. The main advantage of the voltammetric determination is the feasibility to detect the drug in‐situ avoiding tedious intermediate steps such as filtration, collection and replenishment of sample solutions. This work seeks to demonstrate the feasibility of applying voltammetric techniques in dissolution test studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号