首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
In addition to the prototypic amyloid‐β (Aβ) peptides Aβ1–40 and Aβ1–42, several Aβ variants differing in their amino and carboxy termini have been described. Synthetic availability of an Aβ variant is often the key to study its role under physiological or pathological conditions. Herein, we report a protocol for the efficient solid‐phase peptide synthesis of the N‐terminally elongated Aβ‐peptides Aβ?3–38, Aβ?3–40, and Aβ?3–42. Biophysical characterization by NMR spectroscopy, CD spectroscopy, an aggregation assay, and electron microscopy revealed that all three peptides were prone to aggregation into amyloid fibrils. Immunoprecipitation, followed by mass spectrometry, indicated that Aβ?3–38 and Aβ?3–40 are generated by transfected cells even in the presence of a tripartite β‐site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. The elongated Aβ peptides starting at Val(?3) can be separated from N‐terminally‐truncated Aβ forms by high‐resolution isoelectric‐focusing techniques, despite virtually identical isoelectric points. The synthetic Aβ variants and the methods presented here are providing tools to advance our understanding of the potential roles of N‐terminally elongated Aβ variants in Alzheimer's disease.  相似文献   

2.
We report an improved CE method to monitor in vitro the self‐assembly of monomeric amyloid β‐peptide (42 amino acids amyloid β‐peptide, Aβ1–42) and in particular the crucial early steps involved in the formation of the neurotoxic oligomers. In order to start the kinetics from the beginning, sample preparation was optimized to provide samples containing exclusively the monomeric form. The CE method was also improved using a dynamic coating and by reducing the separation distance. Using this method, the disappearance of the monomer as well as the progressive formation of four species during the self‐assembly process can now be monitored and quantified over time. The hydrodynamic radius of the species present at the initial kinetics step was estimated around 1.8 nm by Taylor dispersion analysis while SDS‐PAGE analyses showed the predominance of the monomer. These results confirmed that the Aβ1–42 species present at this initial time was the monomer. Methylene blue, an anti‐Alzheimer disease candidate, was then evaluated. In spite of an oligomerization inhibition, the enhanced disappearance of the Aβ1–42 monomer provoked by methylene blue was demonstrated for the first time. This method, allowing the monomeric and smallest oligomeric species to be monitored, represents a new accurate and precise way to evaluate compounds for drug discovery.  相似文献   

3.
Aβ4‐42 is a major species of Aβ peptide in the brains of both healthy individuals and those affected by Alzheimer's disease. It has recently been demonstrated to bind CuII with an affinity approximately 3000 times higher than the commonly studied Aβ1‐42 and Aβ1‐40 peptides, which are implicated in the pathogenesis of Alzheimer's disease. Metallothionein‐3, a protein considered to orchestrate copper and zinc metabolism in the brain and provide antioxidant protection, was shown to extract CuII from Aβ1‐40 when acting in its native Zn7MT‐3 form. This reaction is assumed to underlie the neuroprotective effect of Zn7MT‐3 against Aβ toxicity. In this work, we used the truncated model peptides Aβ1‐16 and Aβ4‐16 to demonstrate that the high‐affinity CuII complex of Aβ4‐16 is resistant to Zn7MT‐3 reactivity. This indicates that the analogous complex of the full‐length peptide Cu(Aβ4‐42) will not yield copper to MT‐3 in the brain, thus supporting the concept of a physiological role for Aβ4‐42 as a CuII scavenger in the synaptic cleft.  相似文献   

4.
Amyloid‐β peptide (Aβ) isoforms of different lengths and aggregation propensities coexist in vivo. These different isoforms are able to nucleate or frustrate the assembly of each other. N‐terminally truncated Aβ(11–40) and Aβ(11–42) make up one fifth of plaque load yet nothing is known about their interaction with full‐length Aβ(1–40/42). We show that in contrast to C‐terminally truncated isoforms, which do not co‐fibrillize, deletions of ten residues from the N terminus of Aβ have little impact on its ability to co‐fibrillize with the full‐length counterpart. As a consequence, N‐terminally truncated Aβ will accelerate fiber formation and co‐assemble into short rod‐shaped fibers with its full‐length Aβ counterpart. This has implications for the assembly kinetics, morphology, and toxicity of all Aβ isoforms.  相似文献   

5.
《Electroanalysis》2017,29(12):2906-2912
The aggregation of amyloid‐β peptide (Aβ) is believed to play a crucial role in the Alzheimer's disease (AD) pathogenesis and is considered as a therapeutic target for treating AD. The Aβ electrooxidation via a Tyr‐10 residue, sensitive to a depletion of a pool of Aβ monomers and oligomers in the course of Aβ aggregation, may be employed for testing natural and synthetic organic compounds (including short peptides) potentially able to inhibit the pathological Aβ aggregation (antiaggregants). In the present work, using the known peptide antiaggregant RGKLVFFGR‐NH2 (OR2) and its scrambled variant KGLRVGFRF‐NH2 as a control, we demonstrate that the electrochemical method based on electrooxidation of an Aβ42 Tyr‐10 residue, when combined with methods allowing for the evaluation of the Aβ42 aggregate structure and size, can provide essential information regarding the antiaggregant impact on Aβ42 aggregation. Electrochemical measurements were performed using square wave voltammetry on carbon screen printed electrodes whereas the Aβ42 aggregate structure and size were analyzed by means of the conventional thioflavin T (ThT) based fluorescence assay and dynamic light scattering. While inhibiting Aβ42 fibrillation as manifested by the unchanged level of ThT fluorescence, the OR2 peptide antiaggregant had no effect on the decrease of Aβ42 electrooxidation current in the course of Aβ42 aggregation. These observations suggest that OR2 does not stop the aggregation but redirects it into a pathway where amorphous rather than fibrillar aggregates are formed. Hence, the direct electrochemistry appears to offer a simple and cost‐effective approach for probing potential peptide antiaggregants, which is complementary to methods based on detecting Aβ aggregates.  相似文献   

6.
Aggregation of amyloid β‐peptide (Aβ) is closely related to the pathogenesis of Alzheimer’s disease (AD). Although much effort has been devoted to the construction of molecules that inhibit the aggregation of Aβ1‐42, high doses are needed for the inhibition of Aβ aggregation in many cases. Previously, we reported that designed green fluorescent protein (GFP) analogues that gives pseudo‐Aβ β‐sheet structures can work as an aggregation inhibitor against Aβ. To further test this design strategy, we constructed protein analogues that mimic Aβ β‐sheet structures of amyloids by using insulin‐like growth factor 2 receptor domain 11 (IGF2R‐d11) as a scaffold. A designed protein, named IG11KK, which has a parallel configuration of Aβ‐like β sheets, can bind more preferentially to oligomeric Aβ1‐42 than the monomer. Moreover, IG11KK suppressed the aggregation of Aβ1‐42 efficiently, even though lower concentrations of IG11KK than Aβ were used. The aggregation kinetics of Aβ in the presence of the designed proteins revealed that IG11KK can work as an inhibitor not only for the early to middle stages, but also in the latter stage of Aβ aggregation owing to its favorable binding to oligomeric structures of Aβ. The design strategy using β‐barrel proteins such as IGF2R‐d11 and GFP is useful in generating excellent inhibitors of protein misfolding and amyloid formation.  相似文献   

7.
Amyloid peptides, Aβ1–40 and Aβ1–42, represent major molecular targets to develop potential drugs and diagnostic tools for Alzheimer’s Disease (AD). In fact, oligomeric and fibrillar aggregates generated by these peptides are amongst the principal components of amyloid plaques found post mortem in patients suffering from AD. Rosmarinic acid has been demonstrated to be effective in preventing the aggregation of amyloid peptides in vitro and to delay the progression of the disease in animal models. Nevertheless, no information is available about its molecular mechanism of action. Herein, we report the NMR characterization of the interaction of Salvia sclareoides extract and that of its major component, rosmarinic acid, with Aβ1–42 peptide, whose oligomers have been described as the most toxic Aβ species in vivo. Our data shed light on the structural determinants of rosmarinic acid–Aβ1–42 oligomers interaction, thus allowing the elucidation of its mechanism of action. They also provide important information for the rational design of new compounds with higher affinity for Aβ peptides to generate new anti‐amyloidogenic molecules and/or molecular tools for the specific targeting of amyloid aggregates in vivo. In addition, we identified methyl caffeate, another natural compound present in different plants and human diet, as a good ligand of Aβ1–42 oligomers, which also shows anti‐amyloidogenic activity. Finally, we demonstrated the possibility to exploit STD‐NMR and trNOESY experiments to screen extracts from natural sources for the presence of Aβ peptide ligands.  相似文献   

8.
Aggregates of amyloid beta (Aβ) peptides are believed to be responsible for the neuropathology of Alzheimer’s disease. In this work, ferrocene (Fc) is attached to the aggregating core of the Aβ peptides, KLVFFAE. Inhibition of Fc‐KLVFFAE aggregation by curcumin, a natural compound, was monitored by HPLC‐electrochemical detection (HPLC‐EC). The Fc oxidation current is dependent on the incubation condition and curcumin can retain Fc‐KLVFFAE in its monomeric form. We demonstrate that tagging Fc to KLVFFAE affords a cost‐effective and electroactive mimicry of Aβ(1? 42) and HPLC‐EC is suitable for sensitive, reproducible, and facile screening of drugs for inhibiting the aggregation of Aβ peptides.  相似文献   

9.
A wealth of epidemiological evidence indicates a strong link between type 2 diabetes (T2D) and Alzheimer's disease (AD). The fiber deposition with cross‐β‐sheet structure formed by self‐aggregation and misfolding of amyloidogenic peptides is a common hallmark of both diseases. For the patients with T2D, the fibrils are mainly found in the islets of Langerhans that results from the accumulation of human islet amyloid polypeptide (hIAPP). The major component of aggregates located in the brain of AD patients is amyloid‐β (Aβ). Many biophysical and physiological properties are shared by hIAPP and Aβ, and both peptides show similar cytotoxic mechanisms. Therefore, it is meaningful to investigate the possible cross‐interactions of hIAPP and Aβ in both diseases. In this article, the segment 25–35 of Aβ was selected because Aβ25–35 was a core region in the process of amyloid formation and showed similar aggregation tendency and toxicity with full‐length Aβ. The electrospray ionization‐ion mobility‐mass spectrometry analysis and thioflavin T fluorescence kinetic analysis combined with transmission electron microscopy were used to explore the effects of the coexistence of Aβ25–35 and hIAPP on the self‐aggregation of both peptides and whether there was co‐assembly in fibrillation. The results indicated that the aggregation of hIAPP and Aβ25–35 had two nucleation stages in the binary mixtures. hIAPP and Aβ25–35 had a high binding affinity and a series of hetero‐oligomers formed in the mixtures of hIAPP and Aβ25–35 in the early stage. The cross‐reaction between hIAPP monomers and Aβ25–35 monomers as well as a little of oligomers during primary nucleation stage could accelerate the aggregation of Aβ25–35. However, owing to the obvious difference in aggregation ability between hIAPP and Aβ25–35, this cross‐interaction had no significant impact on the self‐assembly of hIAPP. Our study may offer a better understanding for exploring the molecular mechanism of the association between AD and T2D observed in clinical and epidemiological studies and developing therapeutic strategies against amyloid diseases.  相似文献   

10.
Alzheimer’s disease (AD), a progressive severe neurodegenerative disorder, is currently incurable, despite intensive efforts worldwide. Herein, we demonstrate that catalytic oxygenation of amyloid‐β peptides (Aβ) might be an effective approach to treat AD. Aβ1–42 was oxygenated under physiologically‐relevant conditions (pH 7.4, 37 °C) using a riboflavin catalyst and visible light irradiation, with modifications at the Tyr10, His13, His14, and Met35 residues. The oxygenated Aβ1–42 exhibited considerably lower aggregation potency and neurotoxicity compared with native Aβ. Photooxygenation of Aβ can be performed even in the presence of cells, by using a selective flavin catalyst attached to an Aβ‐binding peptide; the Aβ cytotoxicity was attenuated in this case as well. Furthermore, oxygenated Aβ1–42 inhibited the aggregation and cytotoxicity of native Aβ.  相似文献   

11.
We propose the application of a new label‐free optical technique based on photonic nanostructures to real‐time monitor the amyloid‐beta 1‐42 (Aβ(1‐42)) fibrillization, including the early stages of the aggregation process, which are related to the onset of the Alzheimer’s Disease (AD). The aggregation of Aβ peptides into amyloid fibrils has commonly been associated with neuronal death, which culminates in the clinical features of the incurable degenerative AD. Recent studies revealed that cell toxicity is determined by the formation of soluble oligomeric forms of Aβ peptides in the early stages of aggregation. At this phase, classical amyloid detection techniques lack in sensitivity. Upon a chemical passivation of the sensing surface by means of polyethylene glycol, the proposed approach allows an accurate, real‐time monitoring of the refractive index variation of the solution, wherein Aβ(1‐42) peptides are aggregating. This measurement is directly related to the aggregation state of the peptide throughout oligomerization and subsequent fibrillization. Our findings open new perspectives in the understanding of the dynamics of amyloid formation, and validate this approach as a new and powerful method to screen aggregation at early stages.  相似文献   

12.
Racemates often have lower solubility than enantiopure compounds, and the mixing of enantiomers can enhance the aggregation propensity of peptides. Amyloid beta (Aβ) 42 is an aggregation‐prone peptide that is believed to play a key role in Alzheimer's disease. Soluble Aβ42 aggregation intermediates (oligomers) have emerged as being particularly neurotoxic. We hypothesized that the addition of mirror‐image d ‐Aβ42 should reduce the concentration of toxic oligomers formed from natural l ‐Aβ42. We synthesized l ‐ and D ‐Aβ42 and found their equimolar mixing to lead to accelerated fibril formation. Confocal microscopy with fluorescently labeled analogues of the enantiomers showed their colocalization in racemic fibrils. Owing to the enhanced fibril formation propensity, racemic Aβ42 was less prone to form soluble oligomers. This resulted in the protection of cells from the toxicity of l ‐Aβ42 at concentrations up to 50 μm . The mixing of Aβ42 enantiomers thus accelerates the formation of non‐toxic fibrils.  相似文献   

13.
Deposits comprised of amyloid‐β (Aβ) are one of the pathological hallmarks of Alzheimer's disease (AD) and small hydrophobic ligands targeting these aggregated species are used clinically for the diagnosis of AD. Herein, we observed that anionic oligothiophenes efficiently displaced X‐34, a Congo Red analogue, but not Pittsburgh compound B (PIB) from recombinant Aβ amyloid fibrils and Alzheimer's disease brain‐derived Aβ. Overall, we foresee that the oligothiophene scaffold offers the possibility to develop novel high‐affinity ligands for Aβ pathology only found in human AD brain, targeting a different site than PIB.  相似文献   

14.
The tyrosine based electrochemical analysis of synthetic amyloid‐β (Aβ) peptide – an analog of natural peptide implicated in Alzheimer's disease pathogenesis – was applied for a quantitative estimation of peptide aggregation in vitro. The analysis was carried out by square wave voltammetry (SWV) on carbon screen printed electrodes (SPE). The electrooxidation peak current (Ip) for Aβ42 peptide in different aggregation states was directly compared with the size and structure of Aβ42 aggregates occurring in the analyzed sample. Dynamic light scattering (DLS) and thioflavin T (ThT) based fluorescence assay were employed to estimate the size and structure of Aβ42 aggregates. The Ip was found to decrease in a linear fashion when the average diameter of aggregates and the relative ThT fluorescence in Aβ42 solutions exceeded 35 nm and 3, respectively, while being nearly constant below these values. It was suggested that the electrooxidation current is mostly generated by peptide monomers and that a depletion of the monomer pool due to inclusion of Aβ42 molecules in aggregates is responsible for the decrease of electrooxidation current. The direct electrochemistry is emerging as a method complementary to methods based on aggregates’ detection and commonly employed for monitoring Aβ aggregation. The work further enlarges the basis for application of the cost‐effective and rapid electrochemical techniques, such as SWV on carbon SPE, to in vitro studies of Aβ aggregation.  相似文献   

15.
Oligomeric and protofibrillar aggregates formed by the amyloid‐β peptide (Aβ) are believed to be involved in the pathology of Alzheimer’s disease. Central to Alzheimer pathology is also the fact that the longer Aβ42 peptide is more prone to aggregation than the more prevalent Aβ40. Detailed structural studies of Aβ oligomers and protofibrils have been impeded by aggregate heterogeneity and instability. We previously engineered a variant of Aβ that forms stable protofibrils and here we use solid‐state NMR spectroscopy and molecular modeling to derive a structural model of these. NMR data are consistent with packing of residues 16 to 42 of Aβ protomers into hexameric barrel‐like oligomers within the protofibril. The core of the oligomers consists of all residues of the central and C‐terminal hydrophobic regions of Aβ, and hairpin loops extend from the core. The model accounts for why Aβ42 forms oligomers and protofibrils more easily than Aβ40.  相似文献   

16.
Aggregated β‐amyloid (Aβ) is widely considered as a key factor in triggering progressive loss of neuronal function in Alzheimer's disease (AD), so targeting and inhibiting Aβ aggregation has been broadly recognized as an efficient therapeutic strategy for curing AD. Herein, we designed and prepared an organic platinum‐substituted polyoxometalate, (Me4N)3[PW11O40(SiC3H6NH2)2PtCl2] (abbreviated as PtII‐PW11) for inhibiting Aβ42 aggregation. The mechanism of inhibition on Aβ42 aggregation by PtII‐PW11 was attributed to the multiple interactions of PtII‐PW11 with Aβ42 including coordination interaction of Pt2+ in PtII‐PW11 with amino group in Aβ42, electrostatic attraction, hydrogen bonding and van der Waals force. In cell‐based assay, PtII‐PW11 displayed remarkable neuroprotective effect for Aβ42 aggregation‐induced cytotoxicity, leading to increase of cell viability from 49 % to 67 % at a dosage of 8 μm . More importantly, the PtII‐PW11 greatly reduced Aβ deposition and rescued memory loss in APP/PS1 transgenic AD model mice without noticeable cytotoxicity, demonstrating its potential as drugs for AD treatment.  相似文献   

17.
Brain copper imbalance plays an important role in amyloid‐β aggregation, tau hyperphosphorylation, and neurotoxicity observed in Alzheimer's disease (AD). Therefore, the administration of biocompatible metal‐binding agents may offer a potential therapeutic solution to target mislocalized copper ions and restore metallostasis. Histidine‐containing peptides and proteins are excellent metal binders and are found in many natural systems. The design of short peptides showing optimal binding properties represents a promising approach to capture and redistribute mislocalized metal ions, mainly due to their biocompatibility, ease of synthesis, and the possibility of fine‐tuning their metal‐binding affinities in order to suppress unwanted competitive binding with copper‐containing proteins. In the present study, three peptides, namely HWH , HKCH , and HAH , have been designed with the objective of reducing copper toxicity in AD. These tripeptides form highly stable albumin‐like complexes, showing higher affinity for CuII than that of Aβ(1‐40). Furthermore, HWH , HKCH , and HAH act as very efficient inhibitors of copper‐mediated reactive oxygen species (ROS) generation and prevent the copper‐induced overproduction of toxic oligomers in the initial steps of amyloid aggregation in the presence of CuII ions. These tripeptides, and more generally small peptides including the sequence His‐Xaa‐His at the N‐terminus, may therefore be considered as promising motifs for the future development of new and efficient anti‐Alzheimer drugs.  相似文献   

18.
The amyloid beta peptide 42 (Aβ42) is an aggregation‐prone peptide that plays a pivotal role in Alzheimer′s disease. We report that a subtle perturbation to the peptide through a single chirality change at glutamate 22 leads to a pronounced delay in the β‐sheet adoption of the peptide. This was accompanied by an attenuated propensity of the peptide to form fibrils, which was correlated with changes at the level of the fibrillary architecture. Strikingly, the incorporation of d ‐glutamate was found to stabilize a soluble, ordered macromolecular assembly with enhanced cytotoxicity to PC12 cells, highlighting the importance of advanced prefibrillary Aβ aggregates in neurotoxicity.  相似文献   

19.
In the present work, a new electrochemical strategy for the sensitive and specific detection of soluble β‐amyloid Aβ(1–40/1–42) peptides in a rat model of Alzheimer’s disease (AD) is described. In contrast to previous antibody‐based methods, β‐amyloid(1–40/1–42) was quantified based on its binding to gelsolin, a secretory protein present in the cerebrospinal fluid (CSF) and plasma. The level of soluble β‐amyloid peptides in the CSF and various brain regions were found with this method to be lower in rats with AD than in normal rats.  相似文献   

20.
Graphene oxide (GO) is utilized as the modulator to tune the formation and development of amyloid fibrils (Aβ33–42). Atomic force microscopy temporal evolution measurements reveal that the initial binding between the peptide monomer and the large available surface of the GO sheets can redirect the assembly pathway of amyloid beta. The results support the possibility to develop graphene‐based materials to inhibit amyloidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号