首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A rapid, robust and sensitive liquid chromatography–tandem mass spectrometry method was developed and validated for bioanalysis of TJ0711, a novel vasodilatory β‐blocker in dog plasma. This assay is able to chromatographically separate TJ0711 from its isobaric metabolite as well as glucuronide conjugates. Chromatographic separation was achieved on a Welch Ultimate‐XB C18 column (2.1 × 100 mm, 3 μm). The analyte and internal standard (propranolol) were extracted from plasma by liquid–liquid extraction using ethyl acetate. The mass spectrometric detection was carried out in positive ion multiple reaction monitoring mode. Good linearity was obtained over the concentration range of 0.5–500 ng/mL (r > 0.99) for TJ0711. Moreover, the method had good accuracy (RE ranging from −2.70 to −0.32%) and precision (RSD < 7.55%). TJ0711 was stable in dog plasma for at least 6 h at ambient temperature, for at least 30 days at −20°C and after three freeze–thaw cycles. This method was successfully applied to a preclinical pharmacokinetic study and the results demonstrated linear pharmacokinetics of TJ0711 over a dose range from 0.03 to 0.3 mg/kg. No significant gender differences were observed in TJ0711 plasma pharmacokinetic parameters.  相似文献   

2.
Acyclovir, ganciclovir and (R)‐9‐[4‐hydroxy‐2‐(hydroxymethyl)butyl]guanine are active in vitro against the Epstein–Barr virus (EBV) but their in vivo anti‐EBV activity is not well understood. We developed a novel, sensitive high‐performance liquid chromatography assay with ultraviolet detection for measuring acyclovir, ganciclovir and (R)‐9‐[4‐hydroxy‐2‐(hydroxymethyl)butyl]guanine in human plasma to identify quantitative relationships between in vitro anti‐EBV activity and therapeutic response. Characteristics of the assay include a low plasma volume (200 µL), perchloric acid protein precipitation, use of penciclovir as the internal standard, run times less than 8 min and a 50 ng/mL lower limit of quantification. The within‐ and between‐assay variability is 0.7–4.8 and 1.0–7.9%, respectively. Accuracy for all three drugs ranges from 89.5 to 106.4% for four quality controls (50, 100, 1000 and 10,000 ng/mL). This assay supports pharmacokinetic and pharmacodynamic studies of candidate anti‐EBV drugs in children and adults with EBV infections. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, a reliable method for the quantitation of (E )‐N ‐benzyl‐6‐[2‐(3, 4‐dihydroxy benzylidene)hydrazinyl]‐N ‐methylpyridine‐3‐sulfonamide (JW‐55) in rat plasma was developed and validated using high‐performance liquid chromatography. Plasma samples were deproteinized; sildenafil was used as an internal standard. Chromatographic separation was achieved using a reversed‐phase C18 column. The mobile phase, 0.02 m ammonium acetate buffer:acetonitrile (48:52, v /v), was run at a flow rate of 1.0 mL/min at room temperature, and the column eluent was monitored using an ultraviolet detector at 280 nm. The retention times of JW‐55 and sildenafil were ~5.9 and 7.7 min, respectively. The detection limit of JW‐55 in rat plasma was 0.03 μg/mL. Pharmacokinetic parameters of JW‐55 were evaluated after intravenous and oral administration of JW‐55 (10 mg/kg) in rats. After oral administration, the F value was approximately 73.7%.  相似文献   

4.
Preparation of the enantiomeric pair of 3‐[2‐(3‐benzenesulfonylamino‐7‐oxabicyclo[2.2.1]hept‐2‐yl‐methyl)phenyl] propionic acid, a novel thromboxane antagonist is reported. They are synthesized from either enantiomers of known (1R,2R,3R,4S)‐3‐[2‐(3‐carboxy‐7‐oxabicyclo[2,2,1]hept‐2‐yl‐methyl)phenyl]‐propionic acid methyl ester via epimerization, modified Curtius' rearrangement and sulfonylamino formation. Other derivatives may be prepared similarly.  相似文献   

5.
In the present investigation, a series of 4‐((3‐(trifluoromethyl)‐5,6‐dihydro‐[1,2,4]triazolo[4,3‐a]pyrazin‐7(8H)‐yl)methyl)benzenamine analogs 6a–o were synthesized and characterized by IR, NMR (1H and 13C), and mass spectra. All newly synthesized compounds 6a–o were prepared under conventional and microwave irradiation methods. These compounds obtained in higher yields and in shorter reaction times in the microwave irradiation method when compared with the conventional method. Synthesized compounds 6a–o were inspected for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Ra using an established XTT reduction menadione assay. Among the screened compounds, 6i (IC50: 1.82 μg/mL), 6j (IC50: 1.02 μg/mL), and 6k (IC50: 1.59 μg/mL) showed excellent activity. Furthermore, compound 6i showed MIC90 value of 16.02 μg/mL. In summary, the results indicate the identification of some novel, selective, and specific inhibitors against M. tuberculosis that can be explored further for the potential antitubercular drug.  相似文献   

6.
A highly sensitive, specific and enantioselective assay has been validated for the quantitation of OTX015 enantiomers [(+)‐OTX015 and (−)‐OTX015] in mice plasma on LC–MS/MS‐electrospray ionization as per regulatory guidelines. Protein precipitation was used to extract (±)‐OTX015 enantiomers and internal standard (IS) from mice plasma. The active [(−)‐OTX015] and inactive [(+)‐OTX015] enantiomers were resolved on a Chiralpak‐IA column using an isocratic mobile phase (0.2% ammonia/acetonitrile 20 : 80, v /v) at a flow rate of 1.2 mL/min. The total run time was 6.0 min. (+)‐OTX015, (−)‐OTX015 and IS eluted at 3.34, 4.08 and 4.77 min, respectively. The MS/MS ion transitions monitored were m/z 492 → 383 for OTX015 and m/z 457 → 401 for IS. The standard curves for OTX015 enantiomers were linear (r 2 > 0.998) in the concentration range 1.03–1030 ng/mL. The inter‐ and intraday precisions were in the range 2.20–13.3 and 8.03–12.1% and 3.80–14.4 and 8.97–13.6% for (+)‐OTX015 and (−)‐OTX015, respectively. Both the enantiomers were found to be stable in a battery of stability studies. This novel method has been applied to the study of stereoselective oral pharmacokinetics of (−)‐OTX015 and unequivocally demonstrated that (−)‐OTX015 does not undergo chiral inversion to its antipode in vivo in mice.  相似文献   

7.
A new liquid chromatography with tandem mass spectrometry method was developed and validated for the simultaneous determination of trifolirhizin, (–)‐maackiain, (–)‐sophoranone, and 2‐(2,4‐dihydroxyphenyl)‐5,6‐methylenedioxybenzofuran from Sophora tonkinensis in rat plasma using chlorpropamide as an internal standard. Plasma samples (50 μL) were prepared using a simple deproteinization procedure with 150 μL of acetonitrile containing 100 ng/mL of chlorpropamide. Chromatographic separation was carried out on an Acclaim RSLC120 C18 column (2.1 × 100 mm, 2.2 μm) using a gradient elution consisting of 7.5 mM ammonium acetate and acetonitrile containing 0.1% formic acid (0.4 mL/min flow rate, 7.0 min total run time). The detection and quantitation of all analytes were performed in selected reaction monitoring mode under both positive and negative electrospray ionization. This assay was linear over concentration ranges of 50–5000 ng/mL (trifolirhizin), 25–2500 ng/mL ((–)‐maackiain), 5–250 ng/mL ((–)‐sophoranone), and 1–250 ng/mL 2‐(2,4‐dihydroxyphenyl)‐5,6‐methylenedioxybenzofuran) with a lower limit of quantification of 50, 25, 5, and 1 ng/mL for trifolirhizin, (–)‐maackiain, (–)‐sophoranone, and 2‐(2,4‐dihydroxyphenyl)‐5,6‐methylenedioxybenzofuran, respectively. All the validation data, including the specificity, precision, accuracy, recovery, and stability conformed to the acceptance requirements. The results indicated that the developed method is sufficiently reliable for the pharmacokinetic study of the analytes following oral administration of Sophora tonkinensis extract in rats.  相似文献   

8.
Pantoprazole, a proton pump inhibitor, is clinically used for the treatment of peptic diseases. An enantioselective LC‐MS/MS method was developed and validated for the simultaneous determination of pantoprazole enantiomers in human plasma. Pantoprazole enantiomers and the internal standard were extracted from plasma using acetonitrile. Chiral separation was carried on a Chiralpak IE column using the mobile phase consisted of 10 mm ammonium acetate solution containing 0.1% acetic acid–acetonitrile (28 : 72, v /v). MS analysis was performed on an API 4000 mass spectrometer. Multiple reactions monitoring transitions of m /z 384.1→200.1 and 390.1→206.0 were used to quantify pantoprazole enantiomers and internal standard, respectively. For each enantiomer, no apparent matrix effect was found, the calibration curve was linear over 5.00–10,000 ng/mL, the intra‐ and inter‐day precisions were below 10.0%, and the accuracy was within the range of –5.6% to 0.6%. This method was applied to the stereoselective pharmacokinetic studies in human after intravenous administration of S ‐(–)‐pantoprazole sodium injections. No chiral inversion was observed during sample storage, preparation procedure and analysis. While R ‐(+)‐pantoprazole was detected in human plasma with a slightly high concentration, which implied that S ‐(–)‐pantoprazole may convert to R ‐(+)‐pantoprazole in some subjects.  相似文献   

9.
We present a validated liquid chromatography with tandem mass spectrometry method for simultaneous determination of 20‐(S )‐protopanaxatriol and its two oxidative stereoisomeric metabolites (20S ,24S )‐epoxy‐dammarane‐3,6,12,25‐tetraol (M1) and (20S ,24R )‐epoxy‐dammarane‐3,6,12,25‐tetraol (M2) in rat plasma. 20‐(S )‐Protopanaxatriol, M1, and M2 were extracted with methanol and separated on an ACQUITY HSS T3 column. The mass spectrometry detection was accomplished in selected reaction monitoring mode with precursor‐to‐product ion transitions of m/z 493.4→143.1 for M1 and M2, m/z 475.4→391.3 for 20‐(S )‐protopanaxatriol, and m/z 459.4→375.3 for 20‐(S )‐protopanaxadiol (internal standard). The method showed good linearity over the concentration ranges of 1–1000 ng/mL for 20‐(S )‐protopanaxatriol and 0.5–200 ng/mL for M1 and M2, with correlation coefficients of more than 0.995. The lower limits of quantification for 20‐(S )‐protopanaxatriol, M1, and M2 were 1, 0.5, 0.5 ng/mL, respectively. The intra‐ and interday precisions (RSD, %) were less than 10.41% while the accuracy (relative error, %) ranged from –3.14 to 8.73%. Under the current conditions, M1 and M2 were completely separated within 3 min. The validated assay was successfully applied to evaluating pharmacokinetic profiles of 20‐(S )‐protopanaxatriol, M1, and M2 in rat.  相似文献   

10.
In this study, a sensitive HPLC‐UV assay was developed and validated for the determination of LASSBio‐1736 in rat plasma with sodium diclofenac as internal standard (IS). Liquid–liquid extraction using acetonitrile was employed to extract LASSBio‐1736 and IS from 100 μL of plasma previously basified with NaOH 0.1 M. Chromatographic separation was carried on Waters Spherisorb®S5 ODS2 C18 column (150 × 4.6 mm, 5 μm) using an isocratic mobile phase composed by water with triethylamine 0.3% (pH 4), methanol and acetonitrile grade (45:15:40, v/v/v) at a flow rate of 1 mL/min. Both LASSBio‐1736 and IS were eluted at 4.2 and 5 min, respectively, with a total run time of 8 min only. The lower limit of quantification was 0.2 μg/mL and linearity between 0.2 and 4 μg/mL was obtained, with an R2 > 0.99. The accuracy of the method was >90.5%. The relative standard deviations intra and interday were <6.19 and <7.83%, respectively. The method showed the sensitivity, linearity, precision, accuracy and selectivity required to quantify LASSBio‐1736 in preclinical pharmacokinetic studies according to the criteria established by the US Food and Drug Administration and European Medicines Agency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
CO2‐switchable polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(butyl methacrylate) (PBMA) latexes were prepared via surfactant‐free emulsion polymerization (SFEP) under a CO2 atmosphere, employing N‐[3‐(dimethylamino)propyl]methacrylamide (DMAPMAm) as a CO2‐switchable, water‐soluble, and hydrolytically stable comonomer. The conversion of the SFEP of styrene reaches >95% in less than 5 h. The resulting latexes have near monodisperse particles (PDI ≤ 0.05), as confirmed by DLS and TEM. The latexes could be destabilized by bubbling nitrogen (N2) and heating at 65 °C for 30 min, and easily redispersed by only bubbling CO2 for a short time without using sonication. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1059–1066  相似文献   

12.
A sensitive and selective liquid chromatography–tandem mass spectrometric (LC–MS/MS) assay method has been developed and validated for the enantioselective determination of manidipine in human plasma using isotope‐labeled compounds as internal standards. After solid‐phase extraction, R ‐(−)‐manidipine and S ‐(+)‐manidipine were chromatographed on a Chiralpack IC‐3 C18 column using a isocratic mobile phase composed of 2 mm ammonium bicarbonate and acetonitrile (15:85, v /v). The precursor ion to product ion transitions for the enantiomers and internal standards were monitored in the multiple reaction monitoring and positive ionization mode using an API‐4000 mass spectrometer. The method was linear over the concentration range of 0.05–10.2 ng/mL for both enantiomers. The precision and accuracy results over five concentration levels in five different batches were well within the acceptance limits. The mean extraction recovery was >80% for both enantiomers. A variety of stability tests were executed in plasma and in neat samples, which complies with the FDA guidelines. After complete validation, the method was successfully applied to a pharmacokinetic study of a manidipine 20 mg oral dose in 10 healthy South India subjects under fasting conditions. The assay reproducibility is shown through incurred samples reanalysis of 20 subject plasma samples.  相似文献   

13.
A novel method for the stereoselective synthesis of (Z)‐4‐(2‐bromovinyl)benzenesulfonyl azide by simultaneous azidation and debrominative decarboxylation of anti‐2,3‐dibromo‐3‐(4‐chlorosulfonylphenyl)propanoic acid using NaN3 only was developed. Facile transformation of (Z)‐4‐(2‐bromovinyl)benzenesulfonyl azide to (Z)‐N‐[4‐ (2‐bromovinyl)benzenesulfonyl]imidates was also achieved by Cu‐catalyzed three‐component coulping of (Z)‐4‐(2‐bromovinyl)benzenesulfonyl azide, terminal alkynes and alcohols/phenols.  相似文献   

14.
A series of 1‐(3‐chloropyridin‐2‐yl)‐5‐(trifluoromethyl)‐1H‐pyrazole‐4‐carboxamide derivatives which have di‐substituents on nitrogen were designed and synthesized. Bioassay results showed that all the synthetic compounds exhibited lower antifungal activities against Gibberella zeae, Cytospora mandshurica, and Fusarium oxysporum than T 3 (14.7, 21.1, and 32.7 μg/mL), but some of them exhibited better activities against Botrytis cinerea, Phytophthora infestans, and Sclerotinia sclerotiorum than T 3 (>200, >200, and >200 μg/mL); the EC50 values of 7d and 7c against B. cinerea were 94.9 and 56.2 μg/mL, respectively. The EC50 values of 7a , 7d , and 7c against S. sclerotiorum were 73.5, 78.7, and 68.5 μg/mL, respectively.  相似文献   

15.
In this article, a series of O‐2‐[2‐(2‐methoxyethoxy)ethoxy]acetyl celluloses with different degree of substitution (DS) values was synthesized by a homogeneous reaction of cellulose with 2‐[2‐(2‐methoxyethoxy)ethoxy]acetyl chloride in a 10% (w/w) dimethylacetamide/lithium chloride solution, combined with pyridine as the acid acceptor. The total DS values of the derivatives in anhydroglucose units was determined by 1H and 13C NMR spectra, and ranged from 0.4 to 3.0, depending on the amount of acid chloride in the reaction. The effects of the total DS values and the O‐2‐[2‐(2‐methoxyethoxy)ethoxy]acetyl substituent distribution on the solubility of the derivatives were investigated. The lowest limit of the DS value for water‐soluble O‐2‐[2‐(2‐methoxyethoxy)ethoxy]acetyl cellulose was approximately 0.5, which is lower than that of methylcellulose. The amphiphilic derivatives with higher DS values than 1.7 exhibited a good solubility in both water and organic solvents, such as dimethyl sulfoxide, tetrahydrofuran, and chloroform. Sol‐gel transition in aqueous solution was observed for the amphiphilic derivatives with a higher DS value than 1.7; the precipitation temperature (Tp) decreased as the DS value increased, showing that the derivatives are highly temperature sensitive. The thermal properties of the fully substituted derivative were measured using polarized microscopy, DSC, and X‐ray diffraction; and are discussed in terms of phase transition of the sample derivatives. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 376–382, 2001  相似文献   

16.
The title diastereoisomers, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate and methyl 5‐(S)‐[2‐(R)‐methoxycarbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methylphenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate–methyl 5‐(S)‐[2‐(R)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methylphenyl)‐4,5‐dihydropyrazole‐3‐carboxylate (1/1), 2(S),5(S)‐C19H23N3O5·2(R),5(S)‐C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5‐(S)‐[2‐(S)‐methoxycarbonyl)‐2,3,4,5‐tetrahydro­pyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate, 2(S),5(S)‐C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2‐­(methoxycarbonyl)tetrahydropyrrole group.  相似文献   

17.
A new method for the determination of the stereoisomers, in aqueous medium and serum, of the racemic aminoalkanol derivatives I and II of 1,7‐dimethyl‐8,9‐diphenyl‐4‐azatricyclo[5.2.1.02,6]dec‐8‐ene‐3,5,10‐trione, which were found in earlier studies to be potential anticancer drugs, was developed and validated. The optimized conditions included 25 mM phosphate buffer adjusted to pH 2.5, containing γ‐cyclodextrin at a concentration of 5% m/v, as background electrolyte, an applied voltage of +10 kV, and a temperature of 25°C. Separations were carried out using a fused‐silica capillary. The developed method of determining the enantiomers of compounds I(S), I(R) and II(S), II(R) was characterized by the following parameters: a detection time within 10.8 min, a detection limit in the range of 141.2–141.7 ng/mL using the UV absorption detection at 200 nm. Good linearity (R2 = 0.9989–0.9998) was achieved within the range of concentrations studied. A very good extraction yield of 95.4–99.7% was achieved, and recoveries were carried out from both aqueous solutions and matrix serum. The repeatability of the method for peak areas with an accuracy of the determined concentrations of the analytes in the range of 1.43–1.89%, and limits of quantitation in the range of 432.4–436.3 ng/mL were achieved.  相似文献   

18.
A highly sensitive, specific and enantioselective assay has been developed and validated for the estimation of TAK‐700 enantiomers [(+)‐TAK‐700 and (?)‐TAK‐700] in rat plasma on LC‐MS/MS‐ESI in the positive‐ion mode. Liquid–liquid extraction was used to extract (±)‐TAK‐700 enantiomers and IS (phenacetin) from rat plasma. TAK‐700 enantiomers were separated using methanol and 5 mm ammonium acetate (80:20, v/v) at a flow rate of 0.7 mL/min on a Chiralcel OJ‐RH column. The total run time was 7.0 min and the elution of (+)‐TAK‐700, (?)‐TAK‐700 and IS occurred at 3.71, 4.45 and 4.33 min, respectively. The MS/MS ion transitions monitored were m/z 308.2 → 95.0 for TAK‐700 and m/z 180.2 → 110.1 for IS. The standard curves for TAK‐700 enantiomers were linear (r2 > 0.998) in the concentration range 2.01–2015 ng/mL for each enantiomer. The inter‐ and intra‐day precisions were in the ranges 3.74–7.61 and 2.06–8.71% and 3.59–9.00 and 2.32–11.0% for (+)‐TAK‐700 and (?)‐TAK‐700, respectively. Both the enantiomers were found to be stable in a battery of stability studies. This novel method was applied to the study of stereoselective oral pharmacokinetics of (+)‐TAK‐700 and it was unequivocally demonstrated that (+)‐TAK‐700 does not undergo chiral inversion to its antipode in vivo. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A novel online column‐switching chiral high‐performance liquid chromatography method was developed and validated for the simultaneous determination of naftopidil (NAF) and its O‐desmethyl metabolites (DMN) enantiomers in rat feces. Direct and multiple injections of supernatant from rat feces homogenate were allowed through the column‐switching system. Analyte extraction was performed on the Capcell Pak mixed‐functional column by acetonitrile–phosphate buffer (pH 7.4; 10 mm ; 8:92, v/v) flowing at 1 mL/min. Separation of NAF and DMN enantiomers was achieved on the Chiralpak IA column by methanol–acetonitrile–acetate buffer (pH 5.3; 5 mm ; 45:33:22, v/v/v) flowing at 0.5 mL/min. The analytes were measured with a fluorescence detector at 290 nm (λex) and 340 nm (λem). The validated method showed a good linearity [22.5–15,000 ng/mL for (+)‐/(?)‐NAF; 35–25,000 ng/mL for (+)‐/(?)‐DMN] and the lowest limits of quantification for NAF and DMN enantiomers were 22.5 and 35 ng/mL, respectively. Both intra‐ and inter‐day variations were <10%. The assay was successfully applied to the fecal excretion of NAF and DMN enantiomers in rat after single oral administration of (±)‐NAF. Nonstereoselective excretion of (+)‐ and (?)‐NAF was found in feces, while stereoselective excretion of (+)‐ and (?)‐DMN was observed with higher excretion levels of (+)‐DMN, indicating that there may exist stereoselective metabolism for NAF enantiomers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Tobacco‐specific N‐nitrosamines (TSNAs), including N′‐nitrosonornicotine, 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone, N′‐nitrosoanatabine, and N′‐nitrosoanabasine, have been implicated as a source of carcinogenicity in tobacco and cigarette smoke. We present a rapid and effective method comprising SPE based on tetraazacalix[2]arene[2]triazine‐modified silica as sorbent and analysis with HPLC–MS/MS for the determination of TSNAs and 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanol (NNAL), a metabolite of 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone, in rabbit plasma. The linear dynamic ranges were 10–2000 pg/mL for NNAL and 4–2000 pg/mL for the four TSNAs with good correlation coefficients (>0.9965). The LODs were in the range of 0.9–3.7 pg/mL, and the LOQs were between 2.9 and 12.3 pg/mL. The accuracies of the method were also evaluated and found to be in the range of 90.1–113.3%. This method is promising to be applied to the preconcentration and determination of TSNAs and NNAL in smoke and human body fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号