首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A nanogold modified carbon paste electrode (NG‐CPE) was fabricated and used as selective voltammetric sensor for determination of Tartrazine in the presence of Red 10B using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CHA). Electrochemical parameters including the diffusion coefficient (D), the electron transfer coefficient (aXXXXX), and the electron transfer number (n) were determined for the oxidation of Tartrazine. This modified electrode can be applied to simultaneous determination of Tartrazine and Red 10B, because of considerable decreases of anodic overpotentials for both compounds. After optimizing the experimental conditions, the anodic peak current of Tartrazine was linear to its concentration in the range of 0.05‐1.5 μmol l?1, and the detection limit was 0.017 μmol l?1 in phosphate buffer solution (PBS) at pH 4.0. The modified electrode has good stability and repeatability. It was applied to the determination of Tartrazine and Red 10B in soft drinks with satisfactory results.  相似文献   

2.
An ultrasensitive electrochemical biosensor was fabricated for electroanalytical determination of ascorbic acid(AA), dopamine(DA) and uric acid(UA) individually and simultaneously based on polypyrrole hollow nanotubes loaded with Au and Fe3O4 nanoparticles(NPs) uniformly(PPy@Au-Fe3O4). The PPy@Au-Fe3O4 nanotubes were synthesized in one-pot using MoO3 nanorods as templates and the polymerization of Py, the formation of Au and Fe3O4 NPs and the removel of MoO3 templates took place stimultaneously. Electrochemical studies reveal that PPy@Au-Fe3O4modified glassy carbon electrode(GCE) possesses excellent electro-catalytic activities toward the oxidation of AA, DA and UA. Their oxidation peak currents increase linearly in the concentration ranges of 1-2000 μmol/L for AA, 0.01-25 and 25-300 μmol/L for DA and 0.1-300 μmol/L for UA. Their detection limit values(S/N=3) were calculated as 0.45, 0.0049, and 0.051 μmol/L for AA, DA and UA in the individual detection. By changing the concentrations simultaneously, the calibration curves showed linearity to 1000, 200, and 200 μmol/L with detection limit of 0.39, 0.0060, and 0.060 μmol/L for AA, DA, and UA, respectively. Finally, the obtained biosensor was successfully applied to the detection of AA, DA, and UA with satisfactory results on actual samples.  相似文献   

3.
《Electroanalysis》2003,15(21):1693-1698
The voltammetric behaviors of uric acid (UA) and L ‐ascorbic acid (L ‐AA) were studied at well‐aligned carbon nanotube electrode. Compared to glassy carbon, carbon nanotube electrode catalyzes oxidation of UA and L ‐AA, reducing the overpotentials by about 0.028 V and 0.416 V, respectively. Based on its differential catalytic function toward the oxidation of UA and L ‐AA, the carbon nanotube electrode resolved the overlapping voltammetric response of UA and L ‐AA into two well‐defined voltammetric peaks in applying both cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which can be used for a selective determination of UA in the presence of L ‐AA. The peak current obtained from DPV was linearly dependent on the UA concentration in the range of 0.2 μM to 80 μM with a correlation coefficient of 0.997. The detection limit (3δ) for UA was found to be 0.1 μM. Finally, the carbon nanotube electrode was successfully demonstrated as a electrochemical sensor to the determination of UA in human urine samples by simple dilution without further pretreatment.  相似文献   

4.
Wang C  Wang G  Jiao S  Guo Z  Fang B 《Annali di chimica》2007,97(5-6):331-342
Aminylferrocene(FcAI)-Nanogold(NG) modified glassy carbon electrode (FcAI/NG/GCE) was prepared by the Au-N bond between Au and FcAI. Electrochemical impedance spectroscopy (EIS) was employed to study the surface of the modified electrode. The electrochemical behavior of dopamine (DA) on the modified electrode was investigated and it was found that the modified electrode had an obvious electrocatalytic effect on DA. Compared with a bare GCE, the modified electrode exhibited an apparent shift of the oxidation peak potential in the negative potential direction and a marked enhancement in the current response for DA. We investigated the determination of DA on the modified electrode by differential pulse voltammetry (DPV). Linear calibration curve was obtained in the range of 7.0 x 10(-7) mol/L to 6x10(-4) mol/L of DA in 0.1 mol/L phosphate buffer solution (pH = 7.0) with a correlation coefficient of 0.9989. The detection limit (S/N = 3) of DA was estimated to be 1.0 x 10(-7) mol/L. Especially, by using the modified electrode, we can separate the oxidation peaks of ascorbic acid (AA) and DA in the PBS and it was satisfactory for the determination of DA with the interference of AA.  相似文献   

5.
A new composite electrode has been fabricated based on coating multi‐walled carbon nanotubes (MWCNTs) and n‐octylpyridinum hexafluorophosphate (OPPF6) ionic liquid composite on a glassy carbon (GC) electrode (OPPF6‐MWCNTs/GCE). This electrode shows very attractive electrochemical performances for electrooxidation of risperidone (RIS) compared to conventional electrodes using carbon and mineral oil, notably improved sensitivity and stability. The oxidation peak potentials in cyclic voltammogram of RIS on the OPPF6‐MWCNTs/GCE was occurred around 230 mV vs. SCE at Britton–Robinson (B–R) buffer (pH 4.0) at scan rate of 100 mV s?1. The electrochemical parameters such as diffusion coefficient (D), charge transfer coefficient (α) and the electron transfer rate constant (k/s) were determined using cyclic voltammetry. Under the optimized conditions, the peak current was linear to risperidone concentration over the concentration range of 10–200 nM with sensitivity of 0.016 μA/nM?1 using differential pulse voltammetry. The detection limit was 6.54 nM (S/N = 3). The electrode also displayed good selectivity and repeatability. In the presence of clozapine (CLZ) the response of RIS kept almost unchanged. Thus this electrode could find application in the determination of RIS in some real samples. The analytical performance of the OPPF6‐MWCNTs/GCE was demonstrated for the determination of RIS in human serum and pharmaceutical samples.  相似文献   

6.
In this study, ruthenium oxide nanoparticles were electrochemically deposited on the surface of a glassy carbon electrode (RuON-GCE). Electrochemical studies indicate that a modified electrode (RuON-GCE) plays the role of an excellent bifunctional electrocatalyst for the oxidation of adrenaline (AD) and uric acid (UA) in two different potentials. The charge transfer coefficient (α) and the heterogeneous charge transfer rate constant (k′) between the analytes and the electrodeposited nanoparticles were determined using cyclic voltammetry experiments. Through a different pulse voltammetric (DPV) method, the plot of the electrocatalytic current versus AD and UA concentrations emerged to be constituted of two linear segments with different sensitivities. Furthermore, the detection limits of AD and UA were estimated. In DPV, RuON-GCE could separate the oxidation peak potentials of AD, UA, and cysteine (Cys) present in the same solution though, at the bare GCE, the peak potentials were indistinguishable. Finally, the modified electrode activity was studied for the electrocatalytic determination of AD in an injection solution and UA in a human urine sample. The results were found satisfactory.  相似文献   

7.
采用电化学方法将钙羧酸(CCA)聚合修饰在玻碳电极(GCE)表面制备了聚钙羧酸指示剂修饰玻碳电极(PCCA/GCE),并用循环伏安法和交流阻抗法研究了电极的电化学性能。结果表明:在pH 6.0的磷酸盐缓冲溶液中,多巴胺(DA)和尿酸(UA)在聚钙羧酸修饰电极上的氧化峰得以分开,峰电位差为0.14V,据此提出了聚钙羧酸修饰电极差分脉冲伏安法同时测定多巴胺和尿酸的方法。DA和UA的浓度分别在5.0~43.8μmol.L-1和5.0~50.0μmol.L-1范围内与其氧化峰电流呈线性关系,检出限(3S/N)分别为0.2μmol.L-1和0.5μmol.L-1。方法可用于多巴胺注射液样品中DA和UA的测定,测定值的相对标准偏差(n=5)依次为2.43%和2.35%。  相似文献   

8.
A novel electrochemical sensor was fabricated by electrodeposition of gold nanoparticles on a poly(L-methionine) (PMT)-modified glassy carbon electrode (GCE) to form a nano-Au/PMT composite-modified GCE (nano-Au/PMT/GCE). Scanning electron microscopy and electrochemical techniques were used to characterize the composite electrode. The modified electrode exhibited considerable electrocatalytic activity towards the oxidation of dopamine (DA) and uric acid (UA) in phosphate buffer solution (pH = 7.00). Differential pulse voltammetry revealed that the electrocatalytic oxidation currents of DA and UA were linearly related to concentration over the range of 5.0×10-8 to 10-6 mol/L for DA and 7.0×10-8 to 10-6 mol/L for UA. The detection limits were 3.7×10-8 mol/L for DA and 4.5×10-8 mol/L for UA at a signal-to-noise ratio of 3. According to our experimental results, nano-Au/PMT/GCE can be used as a sensitive and selective sensor for simultaneous determination of DA and UA.  相似文献   

9.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed.  相似文献   

10.
本文制备了氧化石墨烯-金纳米棒复合物(GO-GNRs).利用滴涂法制备了修饰电极(GO-GNRs/GCE),通过循环伏安法,还原了GO-GNRs复合物中的GO,制得电化学还原的石墨烯-金纳米棒修饰电极(ERGO-GNRs/GCE).研究了酒石黄在不同电极上的电流响应,结果表明,ERGO-GNRs/GCE对酒石黄的氧化有很好的电催化作用,其浓度在0.05~6.0μmol/L范围内与氧化峰电流呈良好的线性关系,检出限为15 nmol/L.利用ERGO-GNRs/GCE可完成样品中酒石黄含量的测定.  相似文献   

11.
采用电聚合方法在石墨烯纳米片(GN)的表面聚合一层聚对氨基苯磺酸(PABSA),制备了聚对氨基苯磺酸/石墨烯复合修饰玻碳电极(PABSA/GN/GCE)。研究了尿酸(UA)和抗坏血酸(AA)在该修饰电极上的电化学行为。与聚对氨基苯磺酸修饰电极(PABSA/GCE)及石墨烯单层膜修饰电极(GN/GCE)相比,复合修饰电极PABSA/GN/GCE显著提高了对UA和AA的检测灵敏度和分离度。在0.1 mol/L磷酸盐缓冲溶液(pH7.0)中,UA和AA的峰电位差达344 mV,表明PABSA/GN/GCE能实现对UA的选择性测定。UA的峰电流与其浓度呈良好的线性关系,线性范围为1.0×10-7~8.0×10-4mol/L,检出限为4.5×10-8mol/L。该复合修饰电极用于尿样中尿酸的测定,结果满意。  相似文献   

12.
以抗坏血酸为还原剂,采用微波水热法化学还原氧化石墨烯合成了石墨烯纳米片,制备了石墨烯修饰的玻碳电极(RGO/GCE),并采用循环伏安法、计时电量法、交流阻抗法等电化学技术研究了尿酸在该修饰电极上的电化学行为及其影响因素。结果表明,在PBS缓冲溶液中,尿酸(UA)在石墨烯修饰电极上的电极反应是一个受扩散控制的不可逆氧化过程。电极反应的转移电子数n=2,有效面积A=0.182 cm2,扩散系数D=1.51×10-6 cm2.s-1。UA的氧化峰电流与其浓度在5.0×10-6~1.5×10-4 mol/L范围内呈良好线性,r=0.995 7。利用该RGO/GCE修饰电极可以快速准确地测定UA,检出限为2.7×10-7 mol/L,加标回收率为98%~100%。  相似文献   

13.
In this paper electropolymerization of a thin film of para‐phenylenediamine (PPD) is studied at glassy carbon electrode (GCE) in sulfuric acid media by cyclic voltammetry. The results showed that this polymer was conducting and had a reproducible redox couple in the potential region from 0.0 to 0.4 V in phosphate buffer solution. This modified GCE (p‐PPD‐GCE) was applied for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) using differential pulse voltammetry (DPV). The p‐PPD‐GCE in 0.1 M phosphate buffer solution (pH 5.0) separated the DPV signals of AA, DA and UA with sufficient potential differences between AA–DA and DA–UA and also enhanced their oxidation peak currents. The oxidation currents were increased from 2.0 to 2000.0 µM for AA, 10.0 to 1250.0 µM for DA and 50.0 to 1600.0 µM for UA. The detection limits were evaluated as 0.4, 1.0 and 2.5 µM for AA, DA and UA, respectively (S/N=3).  相似文献   

14.
A modified electrode was fabricated by grafting of poly (2,6‐pyridinedicarboxylic acid) film (PDC) by electropolymerization of 2,6‐pyridinedicarboxylic acid on the glassy carbon electrode (GCE). Then, gold nanoparticles (NG) and 1,2‐naphthoquinone‐4‐sulfonic acid sodium (Nq) were immobilized on the PDC/GCE to prepare Nq/NG/PDC/GCE by immersing electrode into NG and Nq solution, respectively. The Nq species on NG/PDC/GCE could catalyze electrooxidation of N‐acetyl‐L ‐cysteine (NAC) with lowering the over potential by about 600 mV. This method used for detection of NAC in dynamic range from 4.0×10?6 M to 1.30×10?4 M with a detection of limit (2σ) 8.0×10?7 M.  相似文献   

15.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

16.
In this paper a graphene (GR) modified carbon ionic liquid electrode (CILE) was fabricated and used as the voltammetric sensor for the sensitive detection of catechol. Due to the specific physicochemical characteristics of GR such as high surface area, excellent conductivity and good electrochemical properties, the modified electrode exhibits rapid response and strong catalytic activity with high stability toward the electrochemical oxidation of catechol. A pair of well‐defined redox peaks appeared with the anodic and the cathodic peak potential located at 225 mV and 133 mV (vs.SCE) in pH 6.5 phosphate buffer solution, respectively. Electrochemical behaviors of catechol on the GR modified CILE were carefully investigated and the electrochemical parameters were calculated with the results of the electrode reaction standard rate constant (ks) as 1.24 s?1, the charge transfer coefficient (α) as 0.4 and the electron transfer number (n) as 2. Under the selected conditions the differential pulse voltammetric peak current increased linearly with the catechol concentrations in the range from 1.0 × 10‐7 to 7.0 × 10?4mol L‐1 with the detection limit as 3.0 × 10?8mol L‐1 (3σ). The proposed method was further applied to the synthetic waste water samples determination with satisfactory results  相似文献   

17.
姚军  李将渊  刘敏 《应用化学》2009,26(7):826-830
制备了聚L-色氨酸修饰玻碳电极(PTRP/GCE),用循环伏安法、线性单扫描伏安法、计时电量法等研究了盐酸吡哆辛(VB6)在PTRP/GCE上的电化学行为及电化学动力学性质, 实验表明:VB6在PTRP/GCE上的电极过程为1电子1质子的不可逆氧化反应,在20~400mV/s范围内,峰电流与扫速的平方根呈良好的线性关系,电极活化面积A为0.29cm2,扩散系数D为1.9612×10-4cm2/s。在pH=3的HAc-NaAc缓冲溶液中,VB6在PTRP/GCE电极上氧化峰电流与其浓度在1×10-4~5×10-6mol/L范围内呈良好的线性关系,线性回归方程为:ipa(μA) =7.7399+408.8129c (mmol/L),R=0.9931,检出限为1×10-6mol/L,VB6样品测定平均回收率为100.15%。  相似文献   

18.
In this paper, a pre‐anodized carbon paste electrode (PACPE) is fabricated by a simple electrochemical pretreatment method, which can be used for the simultaneous determination of uric acid (UA) and ascorbic acid (AA). The influencing mechanism of the acidity on the size of oxidation peak current (ip,a) of UA and AA is discussed in detail. According to the results, in different pH conditions, the intensity of hydrogen bonding between UA, AA and the surface of PACPE, the degree of reduction reaction at the auxiliary electrode, and the structural configurations of UA and AA with different species in reaction system have evident influence on the size of oxidation peak current. In pH 7.00 phosphate buffer solution, the calibration curves for UA and AA are obtained in the range of 5.0 x 10‐7–5.0 x 10‐5 mol/L and 3.0 x 10‐5–5.0 x 10‐3 mol/L, respectively. The detection limits for UA and AA are found to be 2.0 x 10‐8 mol/L and 1.2 x 10‐6 mol/L, respectively. This proposed method has been successfully applied to determine UA and AA in human urine simultaneously with satisfactory results.  相似文献   

19.
Herein, platinum nanoparticles-decorated molybdenum disulfide(Pt NPs@MoS_2) nanocomposite has been synthesized via a microwave-assisted hydrothermal method, which was characterized by transmission electron microscopy(TEM) and powder X-ray diffraction(XRD). This MoS_2-based nanocomposite modified glass carbon electrode(Pt NPs@MoS_2/GCE) exhibited excellent electrocatalytic activity toward dopamine(DA) and uric acid(UA) due to their synergistic effect. Two well-defined oxidation peaks of DA and UA were obtained at Pt NPs@MoS_2/GCE with a large peak separation of 160 m V(DA-UA), suggesting that the modified electrode could individually or simultaneously analyze DA and AA. Under the optimal conditions, the peak currents of DA and UA were linearly dependent on their concentrations in the range of 0.5–150 and 5–1000 mmol/L with detection limit of 0.17 and 0.98 mmol/L, respectively. The proposed MoS_2-based sensor can also be employed to examine DA and UA in real samples with satisfactory results. Therefore, the Pt NPs@MoS_2 nanocomposite might offer a good possibility for electrochemical sensing and other electrocatalytic applications.  相似文献   

20.
A carbon‐coated iron nanoparticles (CIN, a new style fullerence related nanomaterial) modified glassy carbon electrode (CIN/GCE) has been developed for the determination of uric acid (UA). Electrochemical behaviors of UA on CIN/GCE were explored by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the voltammetric response of UA on CIN/GC was enhanced dramatically because of the strong accumulation effect of CIN and the large working area of the CIN/GC electrode. The parameters including the pH of supporting electrolyte, accumulation potential and time, that govern the analytical performance of UA have been studied and optimized. The DPV signal of UA on CIN/GCE increased linearly with its concentration in the range from 5.0×10?7 to 2.0×10?5 M, with a detection limit of 1.5×10?7 M (S/N=3). The CIN/GCE was used for the determination of UA in samples with satisfactory results. The proposed CIN/GCE electrochemical sensing platform holds great promise for simple, rapid, and accurate detection of UA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号