首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 455 毫秒
1.
The propagation of large amplitude nonlinear waves in a peridynamic solid is analyzed. With an elastic material model that hardens in compression, sufficiently large wave pulses propagate as solitary waves whose velocity can far exceed the linear wave speed. In spite of their large velocity and amplitude, these waves leave the material they pass through with no net change in velocity and stress. They are nondissipative and nondispersive, and they travel unchanged over large distances. An approximate solution for solitary waves is derived that reproduces the main features of these waves observed in computational simulations. It is demonstrated by numerical studies that the waves interact only weakly with each other when they collide. Wavetrains composed of many non-interacting solitary waves are found to form and propagate under certain boundary and initial conditions.  相似文献   

2.
Rarefactive solitary wave solutions of a third order nonlinear partial differential equation derived by Scott and Stevenson (Geophys. Res. Lett. 11, 1161–1164 (1984)) to describe the one-dimensional migration of melt under the action of gravity through the Earth's mantle are investigated. The partial differential equation contains two parameters, n and m, which are the exponents in power laws relating, respectively, the permeability of the medium and the bulk and shear viscosities of the solid matrix to the voidage. It is proved that, for any value of m, rarefactive solitary wave solutions satisfying certain physically reasonable boundary conditions always exist ifn>1 but do not exist if 0n1. It is also proved that the speed of the solitary wave is an increasing function of the amplitude of the wave. Six new exact rarefactive solitary wave solutions, four of which are expressed in terms of elementary functions and two in terms of elliptic integrals, are derived for six sets of values of n and m. The large amplitude approximation is considered and the results of Scott and Stevenson for n>2, m=0 and n>1, m=1 are extended to n>1 and all m0. It is shown that, for sufficiently large amplitude, larger amplitude solitary waves are broader in width if 0m1 and are narrower in width if m>1.  相似文献   

3.
The dynamics and energetics of a frontal collision of internal solitary waves (ISW) of first mode in a fluid with two homogeneous layers separated by a thin interfacial layer are studied numerically within the framework of the Navier–Stokes equations for stratified fluid. It was shown that the head-on collision of internal solitary waves of small and moderate amplitude results in a small phase shift and in the generation of dispersive wave train travelling behind the transmitted solitary wave. The phase shift grows as amplitudes of the interacting waves increase. The maximum run-up amplitude during the wave collision reaches a value larger than the sum of the amplitudes of the incident solitary waves. The excess of the maximum run-up amplitude over the sum of the amplitudes of the colliding waves grows with the increasing amplitude of interacting waves of small and moderate amplitudes whereas it decreases for colliding waves of large amplitude. Unlike the waves of small and moderate amplitudes collision of ISWs of large amplitude was accompanied by shear instability and the formation of Kelvin–Helmholtz (KH) vortices in the interface layer, however, subsequently waves again become stable. The loss of energy due to the KH instability does not exceed 5%–6%. An interaction of large amplitude ISW with even small amplitude ISW can trigger instability of larger wave and development of KH billows in larger wave. When smaller wave amplitude increases the wave interaction was accompanied by KH instability of both waves.  相似文献   

4.
In the present work, we study the propagation of non-linear waves in an initially stressed thin elastic tube filled with an inviscid fluid. Considering the physiological conditions of the arteries, in the analysis, the tube is assumed to be subjected to a uniform inner pressure P0 and an axial stretch ratio λz. It is assumed that due to blood flow, a finite dynamical displacement field is superimposed on this static field and, then, the non-linear governing equations of the elastic tube are obtained. Using the reductive perturbation technique, the propagation of weakly non-linear waves in the longwave approximation is investigated. It is shown that the governing equations reduce to the Korteweg-deVries equation which admits a solitary wave solution. It is observed that the present model equations give two solitary wave solutions. The results are also discussed for some elastic materials existing in the literature.  相似文献   

5.
The dynamics of two-dimensional waves of small but finite amplitude are theoretically studied for the case of a two-layer system bounded by a horizontal top and bottom. It is shown that for relatively large steady-state flow velocities and at certain fluid depth ratios the vertical velocity profile is nonlinear. An evolutionary equation governing the fluid interface disturbances and allowing for the long-wave contributions of the layer inertia and surface tension, the weak nonlinearity of the waves, and the unsteady friction on all the boundaries of the system is derived. Steady-state solutions of the cnoidal and solitary wave type for the disturbed flow are determined without regard for dissipation losses. It is found that the magnitude and the direction of the flow can alter not only the lengths of the waves but also their polarity.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 143–158. Original Russian Text Copyright © 2005 by Arkhipov and Khabakhpashev.  相似文献   

6.
Elastic solitary waves resulting from Hertzian contact in one-dimensional (1-D) granular chains have demonstrated promising properties for wave tailoring such as amplitude-dependent wave speed and acoustic band gap zones. However, as load increases, plasticity or other material nonlinearities significantly affect the contact behavior between particles and hence alter the elastic solitary wave formation. This restricts the possible exploitation of solitary wave properties to relatively low load levels (up to a few hundred Newtons). In this work, a method, which we term preconditioning, based on contact pre-yielding is implemented to increase the contact force elastic limit of metallic beads in contact and consequently enhance the ability of 1-D granular chains to sustain high-amplitude elastic solitary waves. Theoretical analyses of single particle deformation and of wave propagation in a 1-D chain under different preconditioning levels are presented, while a complementary experimental setup was developed to demonstrate such behavior in practice. The experimental results show that 1-D granular chains with preconditioned beads can sustain high amplitude (up to several kN peak force) solitary waves. The solitary wave speed is affected by both the wave amplitude and the preconditioning level, while the wave spatial wavelength is still close to 5 times the preconditioned bead size. Comparison between the theoretical and experimental results shows that the current theory can capture the effect of preconditioning level on the solitary wave speed.  相似文献   

7.
John P. Boyd 《Wave Motion》1995,21(4):311-330
“Weakly nonlocal” solitary waves differ from ordinary solitary waves by possessing small amplitude, oscillatory “wings” that extend indefinitely from the large amplitude “core”. Such generalized solitary waves have been discovered in capillarygravity water waves, particle physics models, and geophysical Rossby waves. In this work, we present explicit calculations of weakly nonlocal envelope solitary waves. Each is a sine wave modulated by a slowly-varying “envelope” that itself propagates at the group velocity. Our example is the cubically nonlinear Klein-Gordon equation, which is a model in particle physics (φ4 theory) and in electrical engineering (with a different sign). Both cases have weakly nonlocal“breather” solitons. Via the Lorentz invariance, each breather generates a one-parameter family of nonlocal envelope solitary waves. The φ4 breather was described and calculated in earlier work. This generates envelope solitons which have “wings” that are (mostly) proportional to the second harmonic of the sinusoidal factor. In this article, we calculate breathers and envelope solitary waves for the second, electrical engineering case. Since these, unlike the φ4 waves, contain only odd harmonics, the envelope solitary waves are nonlocal only via the third harmonic.  相似文献   

8.
T.R. Marchant 《Wave Motion》1996,23(4):307-320
Marangoni-Bénard convection is the process by which oscillatory waves are generated on an interface due to a change in surface tension. This process, which can be mass or temperature driven is described by a perturbed Korteweg-de Vries (KdV) equation. The evolution and interaction of solitary waves generated by Marangoni-Bénard convection is examined. The solitary wave with steady-state amplitude, which occurs when the excitation and friction terms of the perturbed KdV equation are in balance is found to second-order in the perturbation parameter. This solitary wave has a fixed amplitude, which depends on the coefficients of the perturbation terms in the governing equation. The evolution of a solitary wave of arbitrary amplitude to the steady-state amplitude is also found, to first-order in the perturbation parameter. In addition, by using a perturbation method based on inverse scattering, it is shown that the interaction of two solitary waves is not elastic with the change in wave amplitude determined. Numerical solutions of the perturbed KdV equation are presented and compared to the asymptotic solutions.  相似文献   

9.
This paper presents an automatic algorithm for detecting and generating solitary waves of nonlinear wave equations. With this purpose, dynamic simulations are carried out, the solution of which evolves into a main pulse along with smaller dispersive tails. The solitary waves are detected automatically by the algorithm by checking that they have constant amplitude and are symmetric respect to its maximum value. Once the main wave has been detected, the algorithm cleans the dispersive tails for time enough so that the solitary wave is obtained with the required precision.In order to use our algorithm, we need a spatial discretization with local basis. The numerical experiments are carried out for the BBM equation discretized in space with cubic finite elements along with periodic boundary conditions. Moreover, a geometric integrator in time is used in order to obtain good approximations of the solitary waves.  相似文献   

10.
史杰  王砚 《应用力学学报》2020,(2):566-572,I0007
基于一维颗粒链中产生的高度非线性孤立波,研究孤立波与半无限复合材料体的耦合作用。根据赫兹定律推导了一维颗粒链中颗粒间相互作用的运动微分方程,建立了颗粒链与半无限复合材料体的接触模型。对于颗粒与复合材料的接触,采用已有文献中修正后的赫兹定律,研究了高度非线性孤立波与半无限复合材料体的耦合力学作用机理,推导了颗粒链与半无限复合材料体的相互耦合运动微分方程组,通过数值计算,得到了各颗粒的内力、速度、位移曲线。分析了材料属性对回弹孤立波出现的时间、幅值的影响。结果表明:随着纤维方向弹性模量的增大,次级回弹波出现的时间和波幅都逐渐增大,随着垂直纤维方向弹性模量的增大,次级回弹波出现的时间先减小后增大,次级回弹波的幅值逐渐减小直至消失。  相似文献   

11.
The solution of a model differential equation for the three-dimensional perturbations of the interface between two immiscible fluids of different densities lying between a stationary nondeformable bottom and cover is presented. It is assumed that the waves have an arbitrary length and small, though finite, amplitude. The shapes of stationary traveling internal waves, both periodic in the two horizontal coordinates and soliton-like, are presented. These shapes depend on different parameters of the problem: the direction of the perturbation wave vector and the fluid layer depth and density ratios.  相似文献   

12.
A new nonlinear evolution equation is derived for surface solitary waves propagating on a liquid-air interface where the wave motion is induced by a harmonic forcing. Instead of the traditional approach involving a base state of the long wave limit, a base state of harmonic waves is assumed for the perturbation analysis. This approach is considered to be more appropriate for channels of length just a few multiples of the depth. The dispersion relation found approaches the classical long wave limit. The weakly nonlinear dispersive waves satisfy a KdV-like nonlinear evolution equation with steeper nonlinearity.  相似文献   

13.
14.
15.
Propagation of sound and weak shock waves in gas-liquid foams is investigated theoretically and experimentally. An original physical model is developed to describe the evolution of small perturbations in a foam of polyhedral structure. The model developed takes into account both peculiarities of interface heat transfer in foam and liquid motion through the system of Plateau-Gibbs borders which results in the appearance of an additional hydrodynamic dissipative force. The Rayleigh equation analog, which takes into account the latter phenomenon, is obtained. Structure and dynamics of weak shock waves are investigated. A vertical shock tube was constructed and used to measure the parameters of weak shock wave propagation in gas-liquid foams of polyhedral structure. Spectral analysis of the data obtained shows that there are weak dispersion and strong dissipation of the initial signal. Comparison of the evolution of experimental and theoretical profiles permits to conclude that the suggested model allows to describe the peculiarities of acoustical perturbations in gas-liquid foam more precisely than it follows from the standard models. Received 15 September 1993 / Accepted 27 December 1993  相似文献   

16.
The interaction of the components of composite solitary waves governed by nonlinear coupled equations is studied numerically. It is shown how predictions of the known exact traveling wave solutions may help in understanding and explaining the process of reshaping seen as head-on and take-over collisions of individual solitary waves. The most interesting results concern the switch in the sign or the periodic modulation of the amplitude of the solitary wave and the direction of its propagation due to collisions.  相似文献   

17.
The experimental data for heat transfer during nucleate pool boiling of saturated liquid metals on plain surfaces are surveyed and a new correlation is presented. The correlation is h = Cq0.7prm, where C and m are, respectively, 13.7 and 0.22 pr < 0.001 and 6.9 and 0.12 for pr > 0.001 (h is in W/m2 K and q in W/m2). This correlation has been verified with data for K, Na, Cs, Li, and Hg from 17 sources over the reduced pressure (pr) range of 4.3 × 10−6 to 1.8 × 10−2. The correlation of Subbotin et al. was found unsatisfactory, but a modified correlation was developed that also gives good agreement with most of the data.  相似文献   

18.
The existence and asymptotic behavior as ε → 0+ of periodic, almost periodic, and bounded solutions of the differential system x = f(t, x, y, ε), Ωy′ = g(t, x, y, ε), are considered where x, f; are n-vectors, y, g are m-vectors and Ω = diag{εh1}…, εhm for integral hi, h1 h2 …, hm. The principal tools are a lemma of Nagumo which allows the construction of appropriate upper and lower solutions and the asymptotic theory of singularly perturbed linear differential systems.  相似文献   

19.
The nonlinear modulation of the interfacial waves of two superposed dielectric fluids with uniform depths and rigid horizontal boundaries, under the influence of constant normal electric fields and uniform horizontal velocities, is investigated using the multiple-time scales method. It is found that the behavior of small perturbations superimposed on traveling wave trains can be described by a nonlinear Schrödinger equation in a frame of reference moving with the group velocity. Wave-like solutions to this equation are examined, and different types of localized excitations (envelope solitary waves) are shown to exist. It is shown that when these perturbations are neutrally stable and sufficiently long, solutions to the nonlinear Schrödinger equation may be approximated by the well-known Korteweg-de Vries equation. The speed of the solitary on the interface is seen to be reduced by the electric field. It is found that there are two critical values of the applied voltage that lead to (i) breaking up of the solitary waves, and (ii) bifurcation of solutions of the governing equations. On the other hand, the complex amplitude of standing wave trains near the marginal state is governed by a similar type of nonlinear Schrödinger equation in which the roles of time and space are interchanged. This equation, under a suitable transformation, is obtained as the Korteweg-de Vries equation with a variable coefficient. It is shown that this type of equations admit a solitary wave type of solutions with variable speed. Using the tangent hyperbolic method, it is observed that the wave speed increases as well as decreases, with the increase of electric field values, according to the chosen wavenumbers range. Finally, the nonlinear stability analysis is discussed in view of the coefficients of nonlinear Schrödinger equation to show the effects of various physical parameters, and also to recover the some limiting cases studied earlier in the literature.  相似文献   

20.
The problem of reflection and transmission due to longitudinal and transverse waves incident obliquely at a plane interface between uniform elastic solid half-space and fractional order thermoelastic solid half-space has been studied. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence and frequency of incident wave and are influenced by the fractional order thermoelastic properties of media. The expressions of amplitude ratios and energy ratios have been computed numerically for a particular model. The variation of amplitude and energy ratios with angle of incidence is shown graphically. The conservation of energy at the interface is verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号