首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ni(NH3)Cl2 and Ni(NH3)Br2 were prepared by the reaction of Ni(NH3)2X2 with NiX2 at 350 °C in a steel autoclave. The crystal structures were determined by X‐ray powder diffraction using synchrotron radiation and refined by Rietveld methods. Ni(NH3)Cl2 and Ni(NH3)Br2 are isotypic and crystallize in the space group I2/m with Z = 8 and for Ni(NH3)Cl2: a = 14.8976(3) Å, b = 3.56251(6) Å, c = 13.9229(3) Å, β = 106.301(1)°; Ni(NH3)Br2a = 15.5764(1) Å, b = 3.74346(3) Å, c = 14.4224(1) Å, β = 105.894(1)°. The crystal structures are built up by two crystallographically distinct but chemically mostly equivalent polymeric octahedra double chains [NiX3/3X2/2(NH3)] (X = Cl, Br) running along the short b‐axis. The octahedra NiX5NH3 share common edges therein. The crystal structures of the ammines Ni(NH3)mX2 with m = 1, 2, 6 can be derived from that of the halides NiX2 (X = Cl, Br) by successive fragmentation of its CdCl2 like layers by NH3.  相似文献   

2.
A Comparison of the Crystal Structures of the Tetraammoniates of Lithium Halides, LiBr·4NH3 and LiI·4NH3, with the Structure of Tetramethylammonium Iodide, N(CH3)4I Crystals of the tetraammoniates of LiBr and LiI sufficient in size for X‐ray structure determinations were obtained by slow evaporation of NH3 at room temperature from a clear solution of the halides in liquid ammonia. The compounds crystallize in the space group Pnma (No. 62) with four formula units in the unit cell: LiBr·4NH3: a = 11.947(5)Å, b = 7.047(4)Å, c = 9.472(3)Å LiI·4NH3: a = 12.646(3)Å, b = 7.302 (1)Å, c = 9.790(2)Å For N(CH3)4I the structure was now successfully solved including the hydrogen positions of the methyl groups. N(CH3)4I: P4/nmm (No. 129), Z = 2, a = 7.948(1)Å, c = 5.738(1)Å The ammoniates of LiBr and LiI crystallize isotypic in a strongly distorted arrangement of the CsCl motif. Even N(CH3)4I has an CsCl‐like structure. Both structure types differ mainly in their orientation of the [Li(NH3)4]+ — resp. [N(CH3)4]+ — cations with respect to the surrounding “cube” of anions.  相似文献   

3.
Platinum(IV) complexes of the tetramine type [PtEnPy2X2]X2 · H2O (X = Cl, Br) have been found to lose a coordinated pyridine molecule at 125–135°C, thereby transforming into triamines [PtEnPyX3]X. The complex [PtEnPyCl3]NO3 has been isolated. Dissolution of the product of [PtEnPy2Cl2]Cl2 chlorination in HCl results in complete destruction of the five-membered chelate ring. The complex [Pt(NH3)2Py2Cl2](NO3)2 has been isolated. A number of compounds have been studied by X-ray diffraction: [PtEnPy2Cl2]Cl2 · 2H2O (I) (monoclinic, space group P21/c, a = 15.418(2) Å, b = 9.203(1) Å, c = 13.762(3) Å, β = 104.18(2)°, Z = 4, R hkl = 0.25), [PtEnPyCl3]NO3 (II) (monoclinic, space group P21/c, a = 8.194(1) Å, b = 8.846(1) Å, c = 19.855(2) Å, β = 97.10(1)°, Z = 4, R hkl = 0.048), and [Pt(NH3)2Py2Cl2](NO3)2 (III) (orthorhombic, space group Pbca, a = 12.316(2) Å, b = 13.250(3) Å, c = 21.868(4) Å, Z = 8, R hkl = 0.027). The reaction of [PtEnPyBr3]Br with bromine gives the polybromide [PtEnPyBr3]Br · Br2 · 0.5 H2O. The chlorination of [PtEnPyCl3]Cl gives the chloramine complex [Pt(NH2-CH2-NH(Cl)PyCl3]Cl · H2O.  相似文献   

4.

The reaction of MX2 (M = Co(II), Ni(II); X = Cl, Br) with 2-aminopyrimidine in aqueous acid yields compounds [(2-apmH)2MX4], (2-apmH)2[MX4], or (2-apmH2) [MX2(H2O)4]X2 (2-apmH = 2-aminopyrimidinium; 2-apmH2 = 2-aminopyrimidinium(2+)). All compounds have been characterized by single crystal X-ray diffraction. The compounds [(2-apmH)2MX4] with M = Co, X = Cl (1); M = Ni, X = Cl (3); and M = Ni, X = Br (4) are isomorphous and crystallize as nearly square planar MX4 units with the 2-apmH cations coordinated in the axial sites through the unprotonated ring nitrogen. (2-ApmH)2[CoBr4] (2) crystallizes as the salt with a nearly tetrahedral CuBr4 2- anion. (2-ApmH2)[NiBr2(H2O)4]Br2 (5) forms as a cocrystal of the neutral, six-coordinate nickel complex and (2-ampH2)Br2, stabilized by extensive hydrogen bonding. Crystal data (1): monoclinic, P21/c, a = 7.540(4), b = 12.954(4), c = 7.277(3) Å, β = 110.09(6), V = 667.4(5) Å3, Z = 2, Dcalc = 1.955 Mg/m3, μ = 2.079 mm-1, R = 0.0501 for [|I|≥2(I)]. For (2): triclinic, P-1, a = 7.720(2), b = 7.916(2), c = 14.797(3) Å, α = 97.264(3), β = 104.788(3), γ = 105.171(3)°, V = 825.3(3) Å3, Z = 2, Dcalc = 2.296 Mg/m3, μ = 10.715 mm-1, R = 0.0308 for [|I|≥2(I)]. For (3): monoclinic, P21/c, a = 7.595(3), b = 12.891(4), c = 7.204(3) Å, β = 111.07(3)°, V = 658.2 Å3, Z = 2, Dcalc = 1.982 Mg/m3, μ = 2.279 mm-1, R = 0.0552 for [|I|≥2(I)]. For (4): monoclinic, P21/c, a = 7.840(2), b = 13.358(4), c = 7.518(2) Å, β = 110.923(3)°, V = 938.6(3) Å3, Z = 2, Dcalc = 2.577 Mg/m3, μ = 12.18 mm-1, R = 0.0280 for [|I|≥2(I)]. For (5): orthorhombic, Pnma, a = 16.776(6), b = 11.943(4), c = 7.079(3) Å, V = 1418.2(9) Å3, Z = 4, Dcalc = 2.564 Mg/m3, μ = 12.639 mm-1, R = 0.0381 for [|I|≥2σ(I)].  相似文献   

5.
Abstract: Two new lead azide halides, PbN3X (X = Cl, Br), were precipitated from aqueous solutions and structurally analyzed by both X-ray single-crystal/powder diffraction and vibrational spectroscopy, in addition to density-functional theory calculations. PbN3Cl crystallizes in the monoclinic space group P21/m (no. 11) with a = 5.5039(11), b = 4.3270(9), c = 7.6576(15) Å, β = 101.28(3)° and adopts a structure with alternating layers of cations and anions. PbN3Br crystallizes in the orthorhombic space group Pnma (no. 62) with a = 7.9192(2), b = 4.2645(1), c = 11.1396(3) Å, and the cations and anions are alternating crosswise. Within PbN3Cl, a Pb2+ cation is surrounded by five azide and four chloride anions whereas, in PbN3Br, the coordination consists of five azide and three bromide anions. Both structures contain chain-like [Pb2X2]2+ units with Pb–Cl = 2.95–3.21 Å and Pb–Br = 3.03–3.38 Å, and the N3 dumbbell is capped by five Pb2+ with Pb–N = 2.79–2.91 Å in PbN3Cl and with Pb–N = 2.69–2.89 Å in PbN3Br. The infrared and Raman spectra show the typical frequencies of a slightly asymmetric N3 unit, in good agreement with DFT phonon calculation. Thermal analyses reveal PbN3Cl to be stable up to 290 °C before it explodes to yield PbCl2, metallic Pb, and gaseous N2.  相似文献   

6.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4X2]2–, X = Cl, Br, I By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with the elemental halogens in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4X2], X = Cl, Br, I are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4Cl2] (triclinic, space group P1, a = 10.352(1), b = 10.438(2), c = 11.890(2) Å, α = 91.808(12), β = 100.676(12), γ = 113.980(10)°, Z = 1), trans‐(Ph4P)2[Pt(N3)4Br2] (triclinic, space group P1, a = 10.336(1), b = 10.536(1), c = 12.119(2) Å, α = 91.762(12), β = 101.135(12), γ = 112.867(10)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4I2] (triclinic, space group P1, a = 10.186(2), b = 10.506(2), c = 12.219(2) Å, α = 91.847(16), β = 101.385(14), γ = 111.965(18)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–Cl = 2.324, Pt–Br = 2.472, Pt–I = 2.619 and Pt–N = 2.052–2.122 Å. The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172.1–176.8° are bonded with Pt–Nα–Nβ‐angles = 116.2–121.9°. In the vibrational spectra the platinum halogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4X2] are observed in the range of 327–337 (X = Cl), at 202 (Br) and in the range of 145–165 cm–1 (I), respectively. The platinum azide stretching modes of the three complex salts are in the range of 401–421 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 1.90, fd(PtBr) = 1.64, fd(PtI) = 1.22, fd(PtNα) = 2.20–2.27 and fd(NαNβ, NβNγ) = 12.44 mdyn/Å.  相似文献   

7.
The crystal structures of the alkali double salts [Mg(H2O)6]XBr3 (X = Rb+, Cs+) were analyzed in dependence on temperature from laboratory and synchrotron X‐ray powder diffraction data. At room temperature, both compounds are isostructural to [Mg(H2O)6](NH4)Br3 (C2/c; Z = 4; a = 9.64128(6) Å, b = 9.86531(5) Å, c = 13.78613(9) Å, β = 90.0875(5)° for [Mg(H2O)6]RbBr3; a = 9.82304(7) Å, b = 9.98043(6) Å, c = 14.0100(1) Å, β = 90.1430(4)° for [Mg(H2O)6]CsBr3). At a temperature of T = 358 K, [Mg(H2O)6]RbBr3 undergoes a reversible phase transition towards a cubic perovskite type of structure with the [Mg(H2O)6]2+ octahedron in the cuboctahedral cavity exhibiting 4‐fold disorder ( ; a = 6.94198(1) Å at T = 458 K). In case of [Mg(H2O)6]CsBr3 the lattice parameters in dependence on temperature show a distinct kink at T = 340 K, but no symmetry breaking phase transition occurs before decomposition starts. The dominant role of hydrogen bonding with respect to the stability of the crystal structures is discussed.  相似文献   

8.
[Br3][SbF6] and [Br3][IrF6] were synthesized by interaction of BrF3 with Sb2O3 or iridium metal, respectively. The former compound crystallizes in the orthorhombic space group Pbcn (No. 60) with a=11.9269(7), b=11.5370(7), c=12.0640(6) Å, V=1660.01(16) Å3, Z=8 at 100 K. The latter compound crystallizes in the triclinic space group P (No. 2) with a=5.4686(5), b=7.6861(8), c=9.9830(9) Å, α=85.320(8), β=82.060(7), γ=78.466(7)°, V=406.56(7) Å3, Z=2 at 100 K. Both compounds contain the cation [Br3]+, which has a bent structure and is coordinated by octahedron-like anions [MF6] (M=Sb, Ir). Experimentally obtained cell parameters, bond lengths, and angles are confirmed by solid-state DFT calculations, which differ from the experimental values by less than 2 %. Relativistic effects on the structure of the tribromonium(1+) cation are studied computationally and found to be small. For the heaviest analogues containing At and Ts, however, pronounced relativistic effects are found, which lead to a linear structure of the polyhalogen cation.  相似文献   

9.
Crystals of the zwitterionic copper(I) π‐complex [(HC≡CCH2NH3)Cu2Br3] have been synthesized by interaction of CuBr with [HC≡CCH2NH3]Br in aqueous solution (pH < 1) and X‐ray studied. The crystals are monoclinic: space group P21/n, a = 6.722(4), b = 12.818(8), c = 9.907(3) Å, β = 100.25(4)°, V = 840.0(8) Å3, Z = 4, R = 0.0592 for 3015 reflections. The crystal structure of the π‐complex contains isolated [(HC≡CCH2NH3)+(Cu2Br3)?]2 units which are incorporated into a framework by strong hydrogen N–H···Br and C≡C–H···Br bonds. The length of π‐coordinated propargylammonium C≡C bond is equal 1.216(8) Å and Cu(I)–(C≡C) distance equals 1.958(5) Å.  相似文献   

10.
The phase diagram of the system [Ph4P]Br/BiBr3 was investigated with the aid of DSC, TG and temperature dependent X‐ray powder diffraction measurements. By varying the reaction conditions, stoichiometry and crystallisation conditions of the reaction between BiBr3 and [Ph4P]Br four polynuclear bromobismuthates are formed. We report here the crystal structure of the solvation product [Ph4P]3[Bi2Br9] · CH3COCH3, which crystallises with monoclinic symmetry in the S. G. P21/n No. 14, a = 12.341(1), b = 32.005(3), c = 19.929(3) Å, β = 99.75(2)°, V = 7758(7) Å3, Z = 4 and the crystal structures of two modifications of the compound [Ph4P]4[Bi6Br22]. The α‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.507(4) Å, b = 14.434(4) Å, c = 17.709(5) Å, α = 81.34(2)°, β = 72.42(2)°, γ = 72.53(2)°, V = 3132.7(1) Å3, Z = 2. The high‐temperature β‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.893(4) Å, b = 14.267(3) Å, c = 16.580(3), α = 100.13(2)°, β = 96.56(2)°, γ = 110.01(2)°, V = 2985.5(1) Å3, Z = 2. Lattice parameters of [Ph4P]4[Bi8Br28] are also given. The thermal behaviour of the compounds and in addition the vibrational spectra of [Ph4P]3[Bi2Br9] · CH3COCH3 are presented and discussed.  相似文献   

11.
Several solid phases with the general formula xM[XHgSO3yHgX2·zMX·nH2O were obtained from aqueous solutions during phase formation studies in the systems M2SO3/HgX2 (M = NH4, K; X = Cl, Br). All phases were structurally characterized on the basis of single crystal X‐ray diffraction data and adopt new structure types. Compounds with x, y, z = 1 and n = 0 are isostructural (structure type I ) and crystallise with two formula units in space group P21/m and lattice parameters of a ≈ 9.7, b ≈ 6.2, c ≈ 10.4Å, β ≈ 111°. Compounds with x, y = 1 and z, n = 0 (structure type II ) crystallize in space group Cmc21 with four formula units and lattice parameters of a ≈ 5.9, b ≈ 22.0, c ≈ 6.9Å. The structures with x = 2, y, z = 1 and n = 0 are likewise isostructural (stucture type III ) and consist of four formula units in space group Pnma with lattice parameters of a ≈ 22.2, b ≈ 6.1, c ≈ 12.4Å. K[HgSO3Cl]·KCl·H2O is the only representative where x = 1, y = 0, z = 1 and n = 1 (structure type IV ). It is triclinic (space group ) with four formula units and lattice parameters of a = 6.1571(8), b = 7.1342(9), c = 10.6491(14) Å, α = 76.889(2), β = 88.364(2), γ = 69.758(2)°. Characteristic for all structures types is the segregation of the M+ cations and the anions and/or HgX2 molecules into layers. The [XHgSO3] anions are present in all structures and have m symmetry, except for K[HgSO3Cl]·KCl·H2O with 1 symmetry (but very close to m symmetry). The different [XHgSO3] units exhibit very similar Hg‐S distances (average 2.372Å) and are more or less bent with ∠(X‐Hg‐S) angles ranging from 159.7 to 173.7°. The molecular HgX2 entities present in structure types I ‐ III deviate only slightly from linearity with ∠(X‐Hg‐X) angles ranging from 174 to 179°. The structures are stabilised by interaction of the K+ or NH4+ cations that are located between the anionic layers or in the vacancies of the framework, by K‐O contacts or, in case of ammonium compounds, by medium to weak hydrogen bonding interactions of the type N‐H···O.  相似文献   

12.
Gd10I16(C2)2 and Gd10Br15B2/Tb10Br15B2 Cluster Compounds with M10 Twin Octahedra The compound Gd10I16(C2)2 can be prepared from Gd metal, GdI3 and C at 950 °C. It crystallizes in P1 with a = 10.463(4) Å, b = 16.945(6) Å, c = 11.220(4) Å, α = 99.15(3)°, β = 92.68(3)° und γ = 88.06(3)°. Gd10Br15B2 is formed between 900 und 950 °C, Tb10Br15B2 between 900 und 930 °C from stoichiometric amounts of the rare earth metals, tribromide and boron. Both compounds crystallize in the space group P1 for Gd10Br15B2 with a = 8.984(2) Å, b = 9.816(2) Å, c = 10.552(5) Å, α = 91.14(3)°, β = 114.61(3)° and γ = 110.94(3)° and for Tb10Br15B2 with a = 8.939(4) Å, b = 9.788(3) Å, c = 10.502(2) Å, α = 91.19(3)°, β = 114.51(3)° and γ = 111.10(2)°. In the crystal structures of all three compounds the rare earth metals form edge‐shared Ln10 twin octahedra. In Gd10I16(C2)2 the Gd octahedra are centered with C2 groups (dC–C = 1.43(7) Å). In Ln10Br15B2 (Ln = Gd, Tb) the octahedra contain single boron atoms. The clusters are connected through halide atoms to chains [Ln10(Z)2X X X ]. Adjacent chains are fused threedimensionally via I I for the Gd iodide carbide and via Br Br for the bromide borides of Gd und Tb. It is interesting to see an identical pattern of connection between the chains for the reduced oxomolybdates, e. g. PbMo5O8.  相似文献   

13.
The monomeric rhenium(I) complex with bidentate telluroether ligand Re(CO)3Br(PhTe(CH2)3TePh) (1) was accessible via reaction of the PhTe(CH2)3TePh with Re(CO)5Br. This chelate complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 9.390(5) Å, b = 10.961(3) Å, c = 11.849(4) Å a = 63.30(3)°, β = 87.49(4)° γ = 69.31(4)°, V = 1009.5(7) Å3 Z = 2, R = 0.033, and Rw = 0.034. Reaction of Re(CO)5Cl with NaTePh yielded the Re(I) specics PhTeRe(CO)5 (2). This complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 7.085(1) Å, b = 9.203(1) Å, c = 11.341(1) Å, α = 107.24(1)°, β = 100.56(1)°, γ = 96.47(1)°, V = 683.2(2) Å3, Z = 2, R = 0.027, Rw = 0.022. Reaction of PhTeRe(CO)5 and (PhSe)2 in THF at 65 °C yielded a product that was confirmed crystallographically to be the known species Re2(μ-SePh)2(CO)8 (3), in which two phenylselenolate ligands bridge the two Re(I). Compound 3 crystallized in monoclinic space group P21/n with a = 7.210(2) Å, b = 18.862(6) Å, c = 9.083(3) Å, β = 107.48(3)° V = 1178.2(7) Å3, Z = 2, R = 0.046, and Rw = 0.051. Methylation of PhTeRe(CO)5 with [Me3O][BF4] afforded Re(I) product [(PhTeMe)Re(CO)5][BF4] (4). This monodentate telluroether species crystallized in monoclinic space group P21/n with a = 8.405(1) Å, b = 13.438(3) Å, c = 15.560(2) Å, β = 92.59(1)° V = 1755.5(5) Å3, Z = 4, R = 0.035, and Rw = 0.035.  相似文献   

14.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

15.
The complexes [Cu(dpp)Br2] ( 1 ) and [Cu(dpp)2][CuBr2] ( 2 ) (dpp = 2,9‐diphenyl‐1,10‐phenanthroline) were synthesized and characterized by single‐crystal X‐ray diffraction methods. Reaction of copper(II) bromide with the dpp ligand in dichloromethane at room temperature afforded 1 , which is a rare example of non‐square planar four‐coordinate copper(II) complexes. Complex 1 crystallizes in the monoclinic space group C2/c with a = 15.352(3), b = 13.192(3), c = 11.358(2) Å, β = 120.61(3)°, V = 1979.6(7) Å3, Z = 4, Dcalc = 1.865 g cm?3. The coordination geometry about the copper center is distorted about halfway between square planar and tetrahedral. The Cu‐N distance is 2.032(2) Å and the Cu‐Br distance 2.3521(5) Å. Heating a CH2Cl2 or acetone solution of 1 resulted in complex 2 , which consists of a slightly distorted tetrahedral [Cu(dpp)2]+ cation and a linear two‐coordinate [CuBr2]? anion. 2 crystallizes in the triclinic space group with a = 10.445(2), b = 11.009(2), c = 18.458(4) Å, α = 104.72(3), β = 94.71(3), γ = 103.50(3)°, V = 1973.3(7) Å3, Z = 2, Dcalc = 1.602 g cm?3. The four Cu(1)‐N distances are between 2.042(3) and 2.067(3) Å, the distance of Cu(2)‐Br(1) 2.2268(8) Å, and the disordered Cu(3)‐Br(2) distances are 2.139(7) and 2.237(4) Å, respectively. Complex 2 could also be prepared by directly reacting CuBr with dpp in CH2Cl2.  相似文献   

16.
Rare Earth Halides Ln4X5Z. Part 1: C and/or C2 in Ln4X5Z The compounds Ln4X5Cn (Ln = La, Ce, Pr; X = Br, I and 1.0 < n < 2.0) are prepared by the reaction of LnX3, Ln metal and graphite in sealed Ta‐ampoules at temperatures 850 °C < T < 1050 °C. They crystallize in the monoclinic space group C2/m. La4I5C1.5: a = 19.849(4) Å, b = 4.1410(8) Å, c = 8.956(2) Å, β = 103.86(3)°, La4I5C2.0: a = 19.907(4) Å, b = 4.1482(8) Å, c = 8.963(2) Å, β = 104.36(3)°, Ce4Br5C1.0: a = 18.306(5) Å, b = 3.9735(6) Å, c = 8.378(2) Å, β=104.91(2)°, Ce4Br5C1.5: a = 18.996(2) Å, b = 3.9310(3) Å, c = 8.282(7) Å, β = 106.74(1)°, Pr4Br5C1.3: a = 18.467(2) Å, b = 3.911(1) Å, c = 8.258(7) Å, β = 105.25(1)° and Pr4Br5C1.5: a = 19.044(2) Å, b = 3.9368(1) Å, c = 8.254(7) Å, β = 106.48(1)°. In the crystal structure the lanthanide metals are connected to Ln6‐octahedra centered by carbon atoms or C2‐groups. The Ln6‐octahedra are condensed via opposite edges to chains and surrounded by X atoms which interconnect the chains. A part n of isolated C‐atoms is substituted by 1‐n C2‐groups. The C‐C distances range between 1.26 and 1.40Å. In the ionic formulation (Ln3+)4(X?)5(C4?)n(C2m?)1?n·e? with 0 < n < 1 and m = 2, 4, 6 (C22?, C24? C26?), there are 1 < e? < 5 electrons centered in metal‐metal bonds.  相似文献   

17.
The reaction of W6Br12 with AgBr in evacuated silica tubes (temperature gradient 925 K/915 K) yielded brownish black octahedra of Ag[W6Br14] ( I ) and yellowish green platelets of Ag2[W6Br14] ( II ) both in the low temperature zone. ( I ) crystallizes cubically (Pn3 (no. 201); a = 13.355 Å, Z = 4) and ( II ) monoclinically (P21/c (no. 14); a = 9.384 Å, b = 15.383 Å, c = 9.522 Å, β = 117.34°, Z = 2). Both crystal structures contain isolated cluster anions, namely [(W6Bri8)Bra6]1– and [(W6Bri8)Bra6])]2–, respectively, with the mean distances and angles: ( I ) d(W–W) = 2.648 Å, d(W–Bri) = 2.617 Å, d(W–Bra) = 2.575 Å, d(Bri…Bri) = 3.700 Å, d(Bri…Bra) = 3.692 Å, ∠W–Bri–W = 60.78°. ( II ) d(W–W) = 2.633 Å, d(W–Bri) = 2.624 Å, d(W–Bra) = 2.613 Å, d(Bri…Bri) = 3.710 Å, d(Bri…Bra) = 3.707 Å, ∠W–Bri–W = 60.23°. The Ag+ cations are trigonal antiprismatically coordinated in ( I ) with d(Ag–Br) = 2.855 Å, but distorted trigonally planar in ( II ) with d(Ag–Br) = 2.588–2.672 Å. The structural details of hitherto known compounds with [W6Br14] anions will be discussed.  相似文献   

18.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

19.
A new layered zinc phosphite with the formula (NH4)[{Zn(H2O)4}0.5Zn2(HPO3)3] has been synthesized under hydrothermal conditions. Its structure was determined by single‐crystal X‐ray diffraction. The compound crystallizes in the triclinic system, space group (No. 2), a = 7.2507(4), b = 9.7982(6), c = 10.2642(6) Å, α = 63.425(2), β = 87.165(2), γ = 72.999(3)°, V = 620.84(6) Å3, Z = 2. The connectivity of ZnO4 tetrahedra, HPO3 pseudo pyramids and ZnO2(H2O)4 octahedra results in macroanionic layers with 4.8 net.  相似文献   

20.
Reactions between CoO, ZnCl2 (or ZnBr2), and molten citric acid (Hcit) led to the formation of two 3d‐3d heterometallic coordination frameworks: [ZnCo(Hcit)Cl] ( 1 ) and [ZnCo(Hcit)Br] ( 2 ). X‐ray structure analyses show that both compounds 1 and 2 crystallize in the monoclinic space group P21/n [ 1 : a = 5.8699(5) Å, b = 17.7963(13) Å, c = 9.2152(8) Å, β = 106.806(4) °, Z = 4, V = 921.53(13) Å3; 2 : a = 5.909(3) Å, b = 17.798(8) Å, c = 9.302(5) Å, β = 106.374(7) °, Z = 4, V = 938.6(8) Å3]. The structures of the two compounds are almost the same except for the terminal halogen ligand. Both of them are 3D frameworks based on citric acid bridging ligands and a 1D backbone chain built of corner‐shared {CoO6} and {ZnO3Cl} polyhedra. Photoluminescence and thermal stabilities of the compounds were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号