首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The zinc(II) coordination polymers [Zn(Htatb)(2,2′‐bipy) · (NMP) · H2O] ( 1 ) and [Zn3(tatb)2(2,2′‐bipy)3 · H2O] ( 2 ) (H3tatb = 4,4′,4′′‐s‐triazine‐2,4,6‐triyl‐tribenzoic acid; 2,2′‐bipy = 2,2′‐bipyridyl, NMP = N‐methyl‐2‐pyrrolidon), were synthesized hydrothermally, and characterized by infrared spectroscopy (IR), powder X‐ray diffraction (PXRD), and single‐crystal X‐ray diffraction. Both compounds 1 and 2 possess expectant low dimensional coordination structures, which further connected into interesting 3D networks by hydrogen bond and strong π–π interactions. Moreover, the thermal stabilities and fluorescent properties of 1 and 2 were investigated.  相似文献   

2.
Four new metal‐organic frameworks [Cu2(2,2′‐bipy)2(ox)(H2O)2]·(H2bptc) ( 1 ), [Cu(bptc)0.5(phen)(H2O)]·H2O ( 2 ), Co2(bptc)(bmb)1.5 ( 3 ) and [Cd2(bptc) (bmb)]·3H2O ( 4 ) (H4bptc = 3,3′,4,4′‐biphenyltetracarboxylic acid, ox = oxalate, phen = 1,10‐phenanthroline, 2,2′‐bipy = 2,2′‐bipyridine and bmb = 4,4′‐bis((1H‐imidazol‐1‐yl)methyl)biphenyl), were obtained by reactions of the corresponding metal salts with H4bptc and N‐containing auxiliary ligands and their structures were determined by single‐crystal X‐ray diffraction. The results reveal that 1 has a 0‐D structure consisting of discrete ionic entities, while 2 features a 1‐D ladder structure. Additionally, there exist π‐π stacking and intermolecular hydrogen‐bonding interactions in 1 and 2 , respectively, forming 3‐D supramolecular structures. In 3 ‐ 4 , undulating 2‐D metal‐bptc layer structures are formed with two different coordination modes of bptc carboxylate groups, respectively, which are further extended by bmb into 3‐D structures. Magnetic properties of 1 and 3 have been studied. The photoluminescence property of 4 has also been investigated. Moreover, nonlinear optical measurements showed that 4 displayed a second‐harmonic‐generation (SHG) response of 0.7 times of that for urea.  相似文献   

3.
Two new CoII coordination polymers [Co4(tbip)4(bipy)4(H2O)4] ( 1 ) and [Co(tbip)(phen)(H2O)] · H2O ( 2 ) (H2tbip = 5‐tert‐butyl isophthalic acid, bipy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. Compound 1 is a tbip‐bridged tetranuclear cobalt(II) complex, which is further linked by hydrogen bonds to form a supramolecular network. Compound 2 shows a tbip‐bridged linear chain structure, which is extended by hydrogen bonds to generate a double chain. Magnetic measurements show that there are weak ferromagnetic interactions between the adjacent CoII ions in 1 .  相似文献   

4.
The hydrolytic ring opening reactions of pyromellitic dianhydride is an effective method to prepare transition metal carboxylate complexes. In this paper, two dinuclear complexes [Ni2(2,2′‐bipy)2(btec)(H2O)6] · 2H2O ( 1 ) and [Cd2 (phen)4(H2O)2(H2btec)] · H2btec · 2H2O ( 2 ) (H4btec = 1,2,4,5‐benzenetetracarboxylic acid, phen = 1,10‐phenanthroline, and 2,2′‐bipy = 2,2′‐bipyridine) were synthesized by slow diffusion methods and their structures were determined byX‐ray structure analysis. In both structures metal atoms are in distorted octahedral environments and they are linked by bis‐monodentately coordinated 1,2,4,5‐benzentetracarboxylate ligands as bridging units. The crystalline compounds, which are insoluble in water as well as common organic solvents, have been characterized in the solid‐state by elemental analysis, thermogravimetric analysis, IR, and diffuse reflectance UV/Visspectroscopy. Moreover, the study of the physical properties of complex 2 demonstrates that it exhibits blue fluorescence emission in the solid state at room temperature.  相似文献   

5.
Two discrete lanthanide complexes with bulky aromatic mixed‐ligands, {[La2(na)6(phen)2]·[La2(na)6(phen)2]} ( 1 ) and [La2(na)6(2,2′‐bipy)2] ( 2 ) (Hna = 1‐naphthoic acid, phen = 1,10‐phenanthroline, and 2,2′‐bipy = 2,2′‐bipyridine), have been synthesized under hydrothermal conditions and fully characterized by single‐crystal X‐ray crystallography, IR, elemental analysis, TG‐DTA and fluorescence spectra. Structure determination reveals that 1 contains two separate binuclear [La2(na)6(phen)2] units, in which both crystallographically LaIII ions are nine‐coordinated with tricapped trigonal prism polyhedron for La1 and a distorted monocapped square antiprism arrangement for La2; whereas 2 has a binuclear structure bridged by carboxylate groups of four na anions. Due to the introduction of bulky aromatic ligands, non‐classical C–H···O H–bonds and π – involved stacking interactions become the dominantly driving forces for the supramolecular structure. The two solid complexes exhibit intense fluorescent emissions at room temperature resulted from the ligand‐to‐metal charge transfer.  相似文献   

6.
Four new transition metal coordination polymers, [Co(bpndc)(phen)(H2O)]n ( 1 ), [Co3(bpndc)3(2,2′‐bpy)2]n·0.5n(i‐C3H7OH) ( 2 ), and [M(bpndc)(2,2′‐bpy)2]n (M = Zn, 3 ; Cu, 4 ; H2bpndc = benzophenone ‐4,4′‐dicarboxylic acid; phen = 1,10‐phenanthroline; 2,2′‐bpy = 2,2′‐bipyridine) have been synthesized by the hydrothermal reactions and characterized by single crystal X‐ray diffraction, elemental analysis, and IR spectrum. Because of the introduction of different terminal auxiliary ligands, bpndc ligands in complexes 1 and 2 adopt different coordination modes. In complex 1 , bpndc ligands act as tridentate ligand and bridge CoII ions into 1D double‐stranded chains; while complex 2 possesses 2D (4,4) grids, where bpndc ligands adopt tetradente and pentadentate modes. Two such grids interpenetrate to form a novel catenane‐like layer. Complexes 3 and 4 are isostructural. Bpndc ligands adopt tetradentate mode and bridge metal ions forming 1D helical chains.  相似文献   

7.
To investigate the influence of the non‐covalent interactions, such as hydrogen‐bonding, π–π packing and d10–d10 interactions in the supramolecular motifs, three cyanido‐bridged heterobimetallic discrete complexes {Mn(bipy)2(H2O)[Ag(CN)2]}[Ag(CN)2] ( 1 ), {Mn(phen)2(H2O)[Au(CN)2]}2[Au(CN)2]2 · 4H2O ( 2 ), and {Cd(bipy)2(H2O)[Au(CN)2]}[Au(CN)2] ( 3 ) (bipy = 2,2′‐bipyridine, and phen = 1,10‐phenanthroline), which are based on dicyanidometallate(I) groups with 1:2 stoichiometry of metal ions and 2,2′‐bipyridyl‐like co‐ligands were synthesized and structurally characterized. In compound 1 , hydrogen bonding and π–π interactions governed the supramolecular contacts. In compound 2 , the incorporation of aurophilic, hydrogen bonding and π–π interactions result in a 3D supramolecular network. In compound 3 , hydrogen bonding and π–π stacking interactions result in a 2D supramolecular layer. In the three complexes, hydrogen‐bonding, π–π packing and/or d10–d10 interactions can play important roles in increasing the dimensionality of supramolecular assemblies.  相似文献   

8.
Three new supramolecular compounds were synthesized and characterized with the formula of [Zn4(picO)4(phen)4]·11.25H2O ( 1 ), [Zn4(picO)4(2,2′‐bpy)4(H2O)4]·12H2O ( 2 ), and [Zn3(picO)3(bpe)5(H2O)3]n·8.5nH2O ( 3 ) (H2picO = 6‐hydroxypicolinic acid; phen = 1,10‐phenanthroline; 2,2′‐bpy = 2,2′‐bipyridine; bpe = 1,2‐bis(4‐pyridyl)ethane). For complexes 1 and 2 , picO ligands adopt tridentate, tetradentate and bidentate coordination modes to link zinc(II) ions into dimers, which are extended into 3D supramolecular structures through hydrogen bonds. Water chains with cyclic page‐like octamer and boat‐like heptamer water clusters are included, respectively. Complex 3 is of a 2D brick‐wall structure. Triple interpenetration occurs, and there are still cyclic chair‐like octamer water clusters in the channels. The fluorescent properties of complexes 1‐3 have also been investigated.  相似文献   

9.
By using a dual‐ligand approach, two new homochiral zinc(II) coordination polymers, Zn2(phen)2(H2O)2(cam)2 · ethanol ( 1 ) and Zn(bipy)(cam) ( 2 ) [phen = 1,10‐phenanthroline, bipy = 2,2′‐bipyridine, H2cam = (1R,3S)‐(+)‐camphoric acid] have been synthesized under solvothermal conditions. Compound 1 has a zigzag chain‐like structure and compound 2 has a linear chain‐like structure. The two compounds exhibit intense photoluminescence upon photoexcitation at 280 and 290 nm, respectively.  相似文献   

10.
To explore the coordination possibilities of anthracene‐based ligands, three cadmium(ιι) complexes with anthracene‐9‐carboxylate ( L ) and relevant auxiliary chelating or bridging ligands were synthesized and characterized: Cd2( L )4(2bpy)2(μ‐H2O) ( 1 ), Cd2( L )4(phen)2(μ‐H2O) ( 2 ), and {[Cd3( L )6(4bpy)]} ( 3 ) (2bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline, and 4bpy = 4,4′‐bipyridine). Structural analyses show that complexes 1 and 2 both take dinuclear structures by incorporating the chelating 2bpy or phen ligand, which are further interlinked by intermolecular hydrogen‐bonding, π ··· π stacking, and/or C–H ··· π supramolecular interactions to generate higher‐dimensional supramolecular frameworks. Complex 3 has a one‐dimensional (1D) ribbon‐like structure, which is further assembled into a two‐dimensional (2D) layer, and a three‐dimensional (3D) framework by the co‐effects of interchain C–H ··· O hydrogen‐bonding and C–H ··· π supramolecular interactions. Moreover, the luminescent properties of these complexes were further investigated in detail.  相似文献   

11.
Slow diffusion reaction of 2,2′‐dithiodibenzoic acid (dtdb) with CuCl2 in the presence of N‐donor ligands results in the formation of different coordination polymers where both S–S and C–S scission and oxidation of S is observed. X‐ray diffraction analysis of [Cu(tdb)(phen)(H2O)]2 · 2H2O.2DMF] ( 1 ), [Cu(tdb)(py)2(H2O)]2 ( 3 ), and [Cu(tdb)(bipy)(H2O)]2 · 0.5H2O ( 4 ) (tdb = thiodibenzoic acid, phen = phenanthroline, py = pyridine, bipy = 2,2′‐bipyridine) show that the metal ions are coordinated to the carboxylate oxygen atoms of the in situ generated tdb ligand in a monodenate fashion. In [Cu(phen)(SO4)2(H2O)2]n ( 2 ) and [Cu(bipy)(SO4)2(H2O)2]n ( 5 ), the sulfur is oxidized to sulfate ions prior to coordination with the metal. Complex 1 has a dimeric structure with π–π interactions between the phen ligands, whereas 3 and 4 form 1D polymeric chains.  相似文献   

12.
A new octameric water cluster was observed in the complex Co2(dptc)(bipy)2(H2O)6 · 4H2O ( 1 ) (H4dptc = diphenyl‐3,3′,4,4′‐tetracarboxylic acid; bipy = 2,2′‐bipyridine), which was characterized by single‐crystal X‐ray diffraction, elemental analysis and IR spectroscopy. The centrosymmetric octamer consists of a water hexamer in the chair form and two water molecules and brings to light a novel mode of the cooperative association of water molecules. Those complex units are connected into a 2D infinite layer framework through hydrogen bonding. Consequently, the 2D layers are further aggregated by hydrogen bonding with octameric subunits and π ··· π stacking interactions to form a 3D supramolecular architecture.  相似文献   

13.
The formation and structural aspects of some metal complexes of thiosalicylic acid (TSA) were studied. The μ‐bridging tetra‐coordinated Ru complex, [Ru(C6H4(CO2)(μ‐S)(H2O)]2 ( 1 ) was formed by hydrothermal reaction of TSA with RuCl3. The complexes [M(dtdb)(phen)(H2O)]n ( 2 – 4 ) (M = ZnII, CoII, NiII, dtdb = 2,2′‐dithiodibenzoate anion, phen = 1,10‐phenanthroline) were obtained by the slow diffusion technique and the in situ S–S bond formation was confirmed by elemental, spectral and X‐ray analysis. Reaction of TSA with CuCl2 and 2,2′‐bipyridine (bipy) under the slow diffusion technique yielded the dimer [Cu(tdb)(bipy)] ( 5 ) (tdb = thiodibenzoic acid), where the in situ generation of 2,2′‐thiodibenzoic acid was observed.  相似文献   

14.
Two new CdII complexes, [Cd( ces )(phen)] ( 1 ) and {[Cd( ces )(bpy)(H2O)](H2O)}2 ( 2 ), were prepared by slow solvent evaporation methods from mixtures of cis‐epoxysuccinic acid and Cd(ClO4)2 · 6H2O in the presence of phen or bpy co‐ligand ( ces = cis‐epoxysuccinate, phen = 1,10‐phenanthroline, and bpy = 2,2′‐bipyridine). Single‐crystal X‐ray diffraction analyses show that complex 1 has a one‐dimensional (1D) helical chain that is further assembled into a two‐dimensional (2D) sheet, and then an overall three‐dimensional (3D) network by the interchain C–H ··· O hydrogen bonds. Complex 2 features a dinuclear structure, which is further interlinked into a 3D supramolecular network by the co‐effects of intermolecular C–H ··· O and C–H ··· π hydrogen bonds as well as π ··· π stacking interactions. The structural differences between 1 and 2 are attributable to the intervention of different 2,2′‐bipyridyl‐like co‐ligands. Moreover, 1 and 2 exhibit intense solid‐state luminescence at room temperature, which mainly originates from the intraligand π→π* transitions of aromatic co‐ligands.  相似文献   

15.
RuII compounds have been universally investigated due to their unique physical and chemical properties. In this paper, a new RuII compound based on 2,2′‐bipy and Hpmtz [2,2′‐bipy = 2,2′‐bipyridine, Hpmtz = 5‐(2‐pyrimidyl)‐1H‐tetrazole], namely [Ru(2,2′‐bipy)2(pmtz)][PF6] · 0.5H2O was prepared and characterized by elemental analysis, IR and single‐crystal X‐ray diffraction. [Ru(2,2′‐bipy)2(pmtz)][PF6] · 0.5H2O shows a mononuclear structure and forms a three‐dimensional network by non‐classic hydrogen bonds. The ability of generation of ROS (reactive oxygen species) makes it has a low phototoxicity IC50 (half‐maximal inhibitory concentration) after Xenon lamp irradiation on Hela cells in vitro. The results demonstrate that [Ru(2,2′‐bipy)2(pmtz)][PF6] · 0.5H2O with high light toxicity and low dark toxicity may be a potential candidate for photodynamic therapy.  相似文献   

16.
Five cobalt(II) complexes based on 1H-indazole-3-carboxylic acid (H2L), [Co(phen)(HL)2]·2H2O (1), [Co(5,5′-dimethyl-2,2′-bipy)(HL)2] (2), [Co(2,2′-bipy)2(HL)2]·5H2O (3), [Co2(2,9-dimethyl-1,10-phen)2(L)2] (4) and [Co2(6,6′-dimethyl-2,2′-bipy)2(L)2]·H2O (5) (2,2'-bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline), have been synthesized and structurally characterized by elemental analyses, IR and UV-vis spectroscopies and single-crystal X-ray crystallography. The results indicate that 1–3 possess mononuclear Co(II) structures, while 4 and 5 exhibit binuclear structure. 1D water tape which is linked by the multiple hydrogen bonds was embedded in the 3D motif of complex 3. Complexes 4 and 5 show two orthogonal planes of motif that was constituted by phen/2,2′-bipy and indazole acid, respectively. The intermolecular interactions including hydrogen bonding and π-π stacking interactions are stabilizing these complexes. The interactions of the synthesized complexes with calf-thymus DNA (CT-DNA) have been investigated by UV-vis absorption titration, ethidium bromide displacement assay and viscosity measurements. The results reveal that the complexes could interact with CT-DNA via a groove binding mode. Their behavior rationalization was further theoretically studied by molecular docking.  相似文献   

17.
The self‐assembly reactions of transition metal ions and 1,3,5‐benzenetricarboxylic acid (H3btc) in the presence of auxiliary aromatic bidentate ligands 1,10‐phenanthroline (1,10‐phen) or 4,4′‐bipyridine‐N,N′‐dioxide (4,4′‐bpdo) have isolated four coordination polymers [Co18(btc)10(H2O)6(OH)6(1,10‐phen)6] · 14H2O · 3DMF ( 1 ) and [M3(btc)2(H2O)4(4,4′‐bpdo)] · 2H2O · 2DMF [M = Co ( 2 ), Mn ( 3 ), Ni ( 4 )]. Single‐crystal X‐ray diffraction analysis revealed that the M3 clusters in the structure of 1 – 4 are connected by hydroxyl group oxygen atoms (or oxygen atoms from 4,4′‐bpdo ligands) and carboxyl groups to generate a three‐dimensional framework. The network of final assemblies can be adjusted by varying the type of auxiliary ligands (1,10‐phen, 4,4′‐bpdo). In addition, the gas adsorption properties of 2 are also investigated.  相似文献   

18.
To survey the influence of aza‐aromatic co‐ligands on the structure of Cadmium(II) sulfonates, three Cd(II) complexes with mixed‐ligand, [CdII(ANS)2(phen)2] ( 1 ), [CdII(ANS)2(2,2′‐bipy)2] ( 2 ) and [CdII(ANS)2(4,4′‐bipy)2]n ( 3 ) (ANS = 2‐aminonaphthalene‐1‐sulfonate; phen = 1,10‐phenanthroline; 2,2′‐bipy = 2,2′‐bipyridine; 4,4′‐bipy = 4,4′‐bipyridine) were synthesized by hydrothermal methods and structurally characterized by elemental analyses, IR spectra, and single crystal X‐ray diffraction. Of the three complexes, ANS consistently coordinates to Cd2+ ion as a monodentate ligand. While phen in 1 and 2,2′‐bipy in 2 act as N,N‐bidentate chelating ligands, leading to the formation of a discrete mononuclear unit; 4,4′‐bipy in 3 bridges two CdII atoms in bis‐monodentate fashion to produce a 2‐D layered network, suggesting that the conjugate skeleton and the binding site of the co‐ligands have a moderate effect on molecular structure, crystal stacking pattern, and intramolecular weak interactions. In addition, the three complexes exhibit similar luminescent emissions originate from the transitions between the energy levels of sulfonate anions.  相似文献   

19.
Two cobalt phosphonates, [Co2(2,2′‐bpy)2(H2O)(pbtcH)] ( 1 ) and [Co2(H2O)(pbtcH)(phen)2] ( 2 ; pbtcH5=5‐phosphonatophenyl‐1,2,4‐tricarboxylic acid, 2,2′‐bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline), with layer structures are reported. Compound 1 contains O‐C‐O and O‐P‐O bridged tetramers of Co4, which are further connected by pbtcH4? units to form a layer. In compound 2 , the cobalt tetramers made up of water‐bridged Co2 dimers and O‐P‐O linkages are connected into a layer by pbtcH4? units. Upon dehydration, compounds 1 and 2 experience single‐crystal‐to‐single‐crystal (SC–SC) structural transformations to form [Co2(2,2′‐bpy)2(pbtcH)] ( 1 a ) and [Co2(pbtcH)(phen)2] ( 2 a ), respectively. The process is reversible in each case. Notably, a breathing effect is observed for 1 , accompanied by pore opening and closing due to the reorientation of the coordinated 2,2′‐bpy molecules. The transformation was also monitored by in situ IR measurements. Magnetic studies reveal that antiferromagnetic interactions are mediated between the magnetic centers in compounds 1 and 1 a , whereas ferromagnetic interactions are dominant in compound 2 .  相似文献   

20.
Five new transition metal complexes [Cu(HL)2(H2O)2] ( 1 ), [Cu(HL)2(phen)] ( 2 ), [Cu(HL)2(H2O)]2(4,4′‐bipy) ( 3 ), [Zn(HL)2(H2O)2]·(4,4′‐bipy) ( 4 ), [Ag(HL)(4,4′‐bipy)]n ( 5 ), (H2L=5‐chloro‐1‐phenyl‐1H‐pyrazole‐3,4‐dicarboxylic acid, phen=1,10‐phenanthroline; 4,4′‐bipy=4,4′‐bipyridine) have been synthesized and characterized. Complexes 1 , 2 and 4 exhibit monomeric structures, 3 shows a dinuclear structure, 5 displays 1D chain structure, and all extend to 3D supramolecular network via rich hydrogen bonds. Complexes 1 , 2 , 3 , 5 comprise single helical chains, while complex 4 generates quadruple‐stranded helical chains. Furthermore, the antibacterial activities of the titled complexes against bacterial species, three Gram positive bacteria (Staphylococcus aureus, Bacillus subtilis and Candida albicans) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were studied and compared to the activities of free ligands by using the microdilution method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号