首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenanthroline‐based hexadentate ligands L1 and L2 bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as LaIII, EuIII, TbIII, LuIII, and YIII metal ions, were synthesized, and the crystal structures of [ML1Cl3] (M=LaIII, EuIII, TbIII, LuIII, or YIII) complexes were determined. Solvent or water molecules act as coligands for the rare‐earth metals in addition to halide anions. The big LnIII ion exhibits a coordination number (CN) of 10, whereas the corresponding EuIII, TbIII, LuIII, and YIII centers with smaller ionic radii show CN=9. Complexes of L2, namely [ML2Cl3] (M=EuIII, TbIII, LuIII, or YIII) ions could also be prepared. Only the complex of EuIII showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine‐5′‐triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine‐5′‐diphosphate (ADP) and adenosine‐5′‐monophosphate (AMP) was found. 31P NMR spectroscopic studies revealed the formation of a [EuL2(ATP)] coordination species.  相似文献   

2.
Complexation studies of the dinucleating ligand H3L (H3L=2‐{[bis(pyridin‐2‐ylmethyl)amino]methyl}‐6‐{[bis(6‐pivaloylamidopyridin‐2‐ylmethyl)amino]methyl}‐4‐methylphenol), with metal‐binding sites A and B, which both provide four donors to a metal ion; a tertiary amine; two pyridines (substituted with amide hydrogen‐bond donors in site B), and a bridging phenolate, with ZnII, CuII, and GaIII are reported. The titration of H3L with the three metal ions in solution was monitored by NMR spectroscopy or EPR and UV/Vis/near‐IR spectroscopy, as well as by ESI‐MS to analyze the selectivity of the two metal‐ion sites A and B of this model ligand for metallophosphatases; the spectroscopic assignments are supported by X‐ray crystallography results. The first ZnII ion coordinates to site A with unsubstituted pyridine donors and, upon addition of a second equivalent of ZnII, this coordinates to the sterically less accessible site B. From a similar titration with GaIII, it emerges that only a mononuclear complex is obtained, with the GaIII center coordinated to site A. When one equivalent of GaIII is reacted with the mononuclear ZnII complex, ZnII is forced by GaIII to exchange the site; this results in a dinuclear complex with GaIII in site A and ZnII in site B. With CuII, two isomers are observed: one with and the other without a bridging phenolate; these differ significantly in their spectroscopic and magnetic properties.  相似文献   

3.
The synthesis and evaluation of three novel bis-1,2,4-triazine ligands containing five-membered aliphatic rings are reported. Compared to the more hydrophobic ligands 1 – 3 containing six-membered aliphatic rings, the distribution ratios for relevant f-block metal ions were approximately one order of magnitude lower in each case. Ligand 10 showed an efficient, selective and rapid separation of AmIII and CmIII from nitric acid. The speciation of the ligands with trivalent f-block metal ions was probed using NMR titrations and competition experiments, time-resolved laser fluorescence spectroscopy and X-ray crystallography. While the tetradentate ligands 8 and 10 formed LnIII complexes of the same stoichiometry as their more hydrophobic analogues 2 and 3 , significant differences in speciation were observed between the two classes of ligand, with a lower percentage of the extracted 1:2 complexes being formed for ligands 8 and 10 . The structures of the solid state 1:1 and 1:2 complexes formed by 8 and 10 with YIII, LuIII and PrIII are very similar to those formed by 2 and 3 with LnIII. Ligand 10 forms CmIII and EuIII 1:2 complexes that are thermodynamically less stable than those formed by ligand 3 , suggesting that less hydrophobic ligands form less stable AnIII complexes. Thus, it has been shown for the first time how tuning the cyclic aliphatic part of these ligands leads to subtle changes in their metal ion speciation, complex stability and metal extraction affinity.  相似文献   

4.
An asymmetric ‘Pacman’ metalloligand, [Zn(PXT)], which features a cofacial ZnII–porphyrin unit (P) covalently attached to a terpyridine (T) chelating group via a rigid xanthene (X) moiety has been prepared, and its interactions with several different trivalent LnIII cations (NdIII, GdIII, YbIII and LuIII) have been examined. The formation of 1:1 metal–ligand complexes was monitored by 1H NMR spectroscopy and corroborated by HRMS data. Solution‐stability constants were determined by UV/Vis titration, and the resulting complexes with NdIII or YbIII demonstrated sensitised emission in the NIR region due to energy transfer from the ZnII–porphyrin donor to LnIII acceptor. The energy transfer was investigated by transient absorption techniques, which provided insight into the kinetics and efficiency of the antenna effect.  相似文献   

5.
Two structurally constrained chelators based on a fused bicyclic scaffold, 4-amino-4-methylperhydro-pyrido[1,2-a][1,4]diazepin-N,N′,N′-triacetic acids [(4R*,10aS*)-PIDAZTA ( L1 ) and (4R*,10aR*)-PIDAZTA ( L2 )], were designed for the preparation of GaIII-based radiopharmaceuticals. The stereochemistry of the ligand scaffold has a deep impact on the properties of the complexes, with unexpected [Ga( L2 )OH] species being superior in terms of both thermodynamic stability and inertness. This peculiar behavior was rationalized on the basis of molecular modeling and appears to be related to a better fit in size of GaIII into the cavity of L2 . Fast and efficient formation of the GaIII chelates at room temperature was observed at pH values between 7 and 8, which enables 68Ga radiolabeling under truly physiological conditions (pH 7.4).  相似文献   

6.
For application in positron emission tomography (PET), PrP9 , a N,N′,N′′‐trisubstituted triazacyclononane with methyl(2‐carboxyethyl)phosphinic acid pendant arms, was developed as 68Ga3+ complexing agent. The synthesis is short and inexpensive. GaIII and FeIII complexes of PrP9 were characterized by single‐crystal X‐ray diffraction. Stepwise protonation constants and thermodynamic stabilities of metal complexes were determined by potentiometry. The GaIII complex possesses a high thermodynamic stability (log K[GaL]=26.24) and a high degree of kinetic inertness. 68Ga labeling of PrP9 is possible at ambient temperature and in a wide pH range, also at pH values as low as 1. This means that for the first time, the neat eluate of a TiO2‐based 68Ge/68Ga generator (typically consisting of 0.1 M HCl) can be directly used for labeling purposes. The rate of 68Ga activity incorporation at pH 3.3 and 20 °C is higher than for the established chelators DOTA and NOTA. Tris‐amides of PrP9 with amino acid esters were synthesized to act as models for multimeric peptide conjugates. These conjugates exhibit radiolabeling properties similar to those of unsubstituted PrP9 .  相似文献   

7.
The cyclen‐based tetraphosphinate chelator 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetrakis[methylene(2‐carboxyethyl)phosphinic acid] (DOTPI) comprises four additional carboxylic acid moieties for bioconjugation. The thermodynamic stability constants (logKML) of metal complexes, as determined by potentiometry, were 23.11 for CuII, 20.0 for LuIII, 19.6 for YIII, and 21.0 for GdIII. DOTPI was functionalized with four cyclo(Arg‐Gly‐Asp‐D ‐Phe‐Lys) (RGD) peptides through polyethylene glycol (PEG4) linkers. The resulting tetrameric conjugate DOTPI(RGD)4 was radiolabeled with 177Lu and 64Cu and showed improved labeling efficiency compared with 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA). The labeled compounds were fully stable in transchelation challenges against trisodium diethylenetriaminepentaacetate (DTPA) and disodium ethylenediaminetetraacetic acid (ETDA), in phosphate buffered saline (PBS), and human plasma. Integrin αvβ3 affinities of the non‐radioactive LuIII and CuII complexes of DOTPI(RGD)4 were 18 times higher (both IC50 about 70 picomolar) than that of the c(RGDfK) peptide (IC50=1.3 nanomolar). Facile access to tetrameric conjugates and the possibility of radiolabeling with therapeutic and diagnostic radionuclides render DOTPI suitable for application in peptide receptor radionuclide imaging (PRRI) and therapy (PRRT).  相似文献   

8.
A new method for the preparation of 3,5-dimethyl-o-phthalodinitrile was proposed, and the substituted diphthalocyanine complexes of LuIII, TmIII, ErIII, and DyIII were synthesized. The spectral and electrochemical characteristics of the complexes were found. The complexes can be used as materials for electrochromic devices with high contrast.  相似文献   

9.
The new tetranuclear complexes [Fe3Ln(μ3-O)2(CCl3COO)8(H2O)(THF)3]·THF (Ln = CeIII (1), PrIII (2), NdIII (3)) and [Fe3Ln(μ3-O)2(CCl3COO)8(H2O)(THF)3]·THF·C7H16 (Ln = SmIII (4), EuIII (5), GdIII (6), TbIII (7), DyIII (8), HoIII (9), LuIII (10) and YIII (11)) have been prepared. All compounds were prepared by the reaction between [Fe2BaO(CCl3COO)6(THF)6] and the corresponding LnIII nitrate salt. The crystal structures of 1–4, 8 and 9 have been determined; these isostructural molecules have a non-planar {Fe3Ln(μ3-O)2} “butterfly” core. Magnetic susceptibility measurements show dominant intramolecular antiferromagnetic exchange interactions for all the complexes. 57Fe Mössbauer spectroscopy shows three different environments for the FeIII metal ions, all in their high-spin state S = 5/2 (confirming that no electron transfer from CeIII to FeIII occurs in 1). At the time scale of the Mössbauer spectroscopy (about 10−7 s), evidence of magnetization blocking, i.e. slow relaxation of the magnetization, is observed below 3 K for 7, which was confirmed by ac susceptibility measurements.  相似文献   

10.
A series of head-on complexes of lanthanoid containing germanotungstates was isolated from a one pot reaction in an acetate buffer at pH 4.5. This convenient approach brought forward the [{Ln(CH3COO)GeW11O39(H2O)}2]12− (Ln=EuIII, GdIII, TbIII, DyIII, HoIII, ErIII, TmIII, and YbIII) family with acetate chelators in the rarely observed μ2: η2-η1 mode. All compounds were structurally characterized using various solid state analytics, such as single crystal X-ray diffraction, FT-IR spectroscopy, and thermogravimetric analysis. The isostructural polyanions crystallize in the monoclinic system (S.G. P21/c). Temperature-dependent magnetic susceptibility measurements were performed on the GdIII-complex which exhibits near perfect Curie-type behavior.  相似文献   

11.
The possibility that the relative reactivity of complexes of actinide metals in the +2 and +3 oxidation states could be investigated by examining reactions between AnIII and AnII species of Th and U with rare-earth metal reagents that provide EPR confirmation of electron transfer reactivity has been explored. Neither Cp’’3ThIII nor Cp’’3UIII will reduce Cp’’3LaIII or Cp’3YIII (Cp’=C5H4SiMe3, Cp’’=C5H3(SiMe3)2). However, both [K(2.2.2-cryptand)][Cp’’3ThII] and [K(2.2.2-cryptand)][Cp’’3UII] reduce Cp’’3LaIII and Cp’3YIII to form [Cp’’3LaII]1− and [Cp’3YII]1−, respectively, which were identified by EPR spectroscopy. The reverse reactions also occur which indicates that the reduction potentials are similar. [Cp’’3LaII]1− reduces Cp’3YIII and the reverse YII/LaIII combination also occurs. In both cases, the reactions generate EPR spectra indicative of multiple species in the mixtures of LaII and YII, which is consistent with ligand exchange and demonstrates that numerous heteroleptic complexes of these LnII ions exist.  相似文献   

12.
Three novel isomorphous complexes of formula [RE(hfac)3(NITPhOCH3)2], where RE = GdIII, YIII and ErIII; hfac = hexafluoroacetylacetonate; NITPhOCH3 = 4′-methoxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, were synthesized, structurally and magnetically characterized. The crystal structure consists of isolated molecules where the nitronyl nitroxide radicals act as monodentate ligands towards RE(III) through the oxygen atom of the N–O group. The magnetic properties of the complexes were studied by measuring their magnetic susceptibilities at various temperatures in the 5–300 K range. The analyses of these magnetic measurements showed that the spin coupling between the gadolinium ion and the radicals in the GdIII complex is ferromagnetic, while antiferromagnetic superexchange interaction exists between the two radicals in the GdIII and YIII complexes. The ErIII complex reveals an overall intramolecular antiferromagnetic exchange interaction.  相似文献   

13.
A series of rare earth metal complexes RE(TPP)(acac) (RE = NdIII, YbIII, EuIII, ErIII, PrIII, and LuIII; TPP = 5,10,15,20-tetraphenylporphyrin) were synthesized and characterized via UV–vis, IR, and elemental analyses. Their catalytic activities on the synthesis of cyclic carbonates from carbon dioxide and epoxides under different reaction conditions (temperature, pressure, and reaction time) were investigated. Catalytic reaction tests showed that the complex Lu(TPP)(acac) could significantly enhance the catalytic reactivity under mild conditions without any co-solvent.  相似文献   

14.
Chemical Vapor Transport of Solid Solutions. 11 Mixed Phases and Chemical Vapor Transport in the Systems CrIII/InIII/GeIV/O, GaIII/InIII/GeIV/O, MnIII/InIII/GeIV/O und FeIII/InIII/GeIV/O By means of chemical vapor transport methods the following mixed phases have been prepared: Cr0, 18In1, 82Ge2O7 (Cl2, 950 → 850 °C), (Ga0, 6In1, 4)2Ge2O7 (Thortveitit‐type, Cl2, 1050 → 950 °C), (Ga1, 9In0, 1)2Ge2O7 (Ga2Ge2O7‐type, 1050 → 950 °C), (In1, 9Mn0, 1)2Ge2O7 (Thortveiti‐type, Cl2, 1000 → 800 °C), mixed phase crystallizing in the Mn2Ge2O7‐structure showing a composition near MnInGe2O7 (Cl2, 1000 → 800 °C), Mn6, 5In0, 5GeO12 (Braunit‐type, Cl2, 1000 → 800 °C), (FexIn1‐x)Ge2O7 (Thortveitit‐type with x = 0…0, 94; Cl2, 840 → 780 °C). Changing the compositions of the starting materials showed no effect on the composition of the deposit except for the system Fe2O3‐In2O3‐GeO2.  相似文献   

15.
NMR, potentiometric, and UV/VIS measurements were run to study the protonation and the In3+ and Cu2+ stability constants of 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (do3a, L). The protonation of do3a follows the typical scheme with two high and several low log KH values. Between pH 11 and 13, the protonation mainly occurs at the N-atom, which is not substituted by an acetate side chain. The In3+ complex is not appreciably protonated even at low pH values (pH ? 1.7), whereas [CuL] can add up to three protons in acidic solution to give the species [CuLH], [CuLH2], and [CuLH3], the stability of which was determined. The formation rates of the Y3+, Gd3+, Ga3+, and In3+ complexes with do3a were measured using a pH-stat technique, whereas that of Cu2+, being faster, was followed on a stopped-flow spectrophotometer. In all cases, the reaction scheme implies the rapid formation of partially protonated intermediates, which rearrange themselves to the final product in the rate-determining process. ([MLH])in, an intermediate, in which the metal ion probably is coordinated by two amino acetate groups, proved to be the reactive species for Y3+, Gd3+, and Ga3+. The formation of [Cu(do3a)] was interpreted by postulating that either ([CuLH])in or ([CuLH])in, and ([CuLH2])in are the reactive complexes. The rates of dissociation of the Y3+, Gd3+, and Cu2+ complexes with do3a were studied spectrophotometrically. For Y3+ and Gd3+, arsenazo III was used as a scavenger, whereas for Cu2+ the absorption associated with d-d* transition was followed. For [Y(do3a)] and [Gd(do3a)], the rate law follows the kinetic expression kobsd ? k0 + k1[H+]. The dissociation of [Cu(do3a)] goes through the proton-independent dissociation of [CuLH3], which is the main species at low pH.  相似文献   

16.
At wavelengths near 1 mm six rotational transitions of GaCl have been observed. The analysis including previous measurements on the rotational transitionJ = 1 ← 0 resulted in extended sets of the Dunham parametersY 01,Y 11,Y 21,Y 31,Y 02,Y 12 andY 03 of the four isotopic species69Ga35Cl,71Ga35Cl,69Ga37Cl and71Ga37Cl. With these microwave data the constantsY 10 ≈ εe and —Y 20 ≈ ω e x e were determined. The parameters of the Dunham potentiala 0,a 1,a 2,a 3 andr e are given. The GaCl was produced by reaction of gaseous CCl4 with Ga evaporated at 1,500°C.  相似文献   

17.
Radioactive solutions of 177g,mLuIIICl3 are used for labeling organic compounds for metabolic radiotherapy and radioimmunotherapy. The labeling process involves Lu in III oxidation state, so the presence of other stable impurities in the same oxidation state could result in an isomorphous dilution of radioactive 177gLu. Samples of 177gLuCl3 were analyzed to quantify the chemical impurities with a special regard for trivalent elements with instrumental neutron activation analysis (INAA), carried out in the research nuclear reactor TRIGA MARK II (GA, USA) of the Università degli Studi di Pavia, and electrothermal atomic absorption spectroscopy (ET-AAS) (Varian, USA) at LASA.  相似文献   

18.
Summary Eight aluminium and gallium heteropoly undecatungstometalate complexes of general formula Kn[M(H2O)-XW11O39]·nH2O, where M=AlIII, GaIII, and X=CrIII, FeIII, CoII or CuII, have been prepared and characterized by elemental analysis, cation exchange i.r., u.v., x-ray powder diffraction and by thermal analyis. The compounds are stable in acidic solution. I.r., u.v. spectra and x-ray diffraction studies show that the structure of the compounds derives from the Keggin structure. Their thermostability is higher than that of the homologous dodecatungstometalates.  相似文献   

19.
The phthalocyaninato double‐decker complexes [M(obPc)2]0 (M= YIII, TbIII, DyIII; obPc=2,3,9,10,16,17,23,24‐octabutoxyphthalocyaninato), along with their reduced ([M(obPc)2]?[P(Ph)4]+; M=TbIII, DyIII) and oxidized ([M(obPc)2]+[SbCl6]? (M=YIII, TbIII) counterparts were studied with 1H, 13C and 2D NMR. From the NMR data of the neutral (i.e., with one unpaired electron in the ligands) and anionic TbIII complexes, along with the use of dispersion corrected DFT methods, it was possible to separate the metal‐centered and ligand‐centered contributions to the hyperfine NMR shift. These contributions to the 1H and 13C hyperfine NMR shifts were further analyzed in terms of pseudocontact and Fermi contact shifts. Furthermore, from a combination of NMR data and DFT calculations, we have determined the spin multiplicity of the neutral complexes [M(obPc)2]0 (M=TbIII and DyIII) at room temperature. From the NMR data of the cationic TbIII complex, for which actually no experimental structure determination is available, we have analyzed the structural changes induced by oxidation from its neutral/anionic species and shown that the interligand distance decreases upon oxidation. The fast electron exchange process between the neutral and anionic TbIII double‐decker complexes was also studied.  相似文献   

20.
Complex formation of o-hydroxybenzaldehyde isonicotinoyl hydrazone with GaIII, InIII and TlIII has been studied. The thallium complex is unstable. The composition and the instability constants of gallium and indium complexes were determined. Molar absorptivity of gallium complex at 390 nm is 3.40 × 104 and that of indium at 380 nm is 3.20 × 104 l mole?1 cm?1. Both complexes were found to be rapidly and quantitatively transfered into 1-pentanol. The corresponding aluminum complex is not extracted. Possible analytical application for separation and spectrophotometric determination of these elements is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号