首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Two nickel(II) complexes, namely {[NiL(MeOH)(μ‐OAc)]2Ni} · 2CH2Cl2 · 2MeOH ( 1 ) and {[NiL(EtOH)(μ‐OAc)]2Ni} · 2EtOH ( 2 ) {H2L = 5, 5′‐dimethoxy‐2, 2′‐[(ethylene)dioxybis(nitrilomethylidyne)]diphenol}, were synthesized and structurally characterized. Two trinuclear NiII complexes are both hexacoordinate around the central NiII atoms, showing octahedral coordination arrangements, and each complex comprises three divalent NiII atoms, two deprotonated L2– ligands, in which four μ‐phenoxo oxygen atoms forming two [NiL(X)] (X = MeOH or EtOH) units, and coordinated and non‐coordinated solvent molecules. Complex 1 exhibits a 2D supramolecular network through intermolecular O–H ··· O, C–H ··· O and C–H ··· π interactions, whereas complex 2 forms an infinite 1D chain by intermolecular C–H ··· O hydrogen bonding interactions.  相似文献   

2.
Mononuclear copper(II) and trinuclear cobalt(II) complexes, namely [Cu(L1)]2 · CH2Cl2 and [{Co(L2)(EtOH)}2Co(H2O)] · EtOH {H2L1 = 4,6‐dichloro‐6′‐methyoxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol and H3L2 = 6‐ethyoxy‐6′‐hydroxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol}, were synthesized and characterized by elemental analyses, IR and UV/Vis spectroscopy, and single‐crystal X‐ray diffraction. In the CuII complex, the CuII atom is four‐coordinate, with a N2O2 coordination sphere, and has a slightly distorted square‐planar arrangement. Interestingly, the obtained trinuclear CoII complex is different from the common reported 2:3 (L:CoII) salamo‐type CoII complexes. Infinite 2D layer supramolecular structures are formed via abundant intermolecular hydrogen bonding and π ··· π stacking interactions in the CuII and CoII complexes.  相似文献   

3.
To explore the coordination abilities of nitronyl nitroxide ligands, two ligands substituted with quinoxaline ( L1 ) and 2‐phenyl‐1, 2, 3‐triazole ( L2 ) and their NiII and ZnII complexes: Ni( L1 )(hfac)2 ( 1 ), Ni( L2 )(hfac)2 ( 2 ), and Zn( L2 )(hfac)2 ( 3 ) (hfac = hexafluoroacetylacetonate), were synthesized and characterized. X‐ray single‐crystal diffraction analysis shows that compound 1 has a mononuclear structure, which is further linked into a three‐dimensional (3D) supramolecular network by C–H ··· F hydrogen‐bonding, C–H ··· π, and π ··· π stacking interactions. Complexes 2 and 3 have similar mononuclear structures, which are further linked into one‐dimensional (1D) supramolecular chains by various intermolecular weak interactions, such as C–H ··· F hydrogen‐bonding, and π ··· π stacking interactions. The results indicate that the steric bulk of L1 and L2 and the existence of hexafluoroacetylacetonate (hfac) play important roles in controlling the formation of the final frameworks of complexes 1 – 3 . Moreover, the luminescent properties of the ligands and their complexes were investigated in detail.  相似文献   

4.
The reaction of [1,3‐bis(2‐ethoxy)benzene]triazene, [ HL ], with Hg(SCN)2 and Hg(CH3COO)2, resulted in the formation of the complexes [Hg L (SCN)] ( 1 ) and [Hg L 2] · CH3OH ( 2 ). They were characterized by means of X‐ray crystallography, CHN analysis, FT‐IR, 1H NMR, and 13C NMR spectroscopy. The structure of compound 1 consists of two independent complexes in which the HgII atoms are stacked along the crystallographic a axis to form infinite chains. Each HgII atom is chelated by one L ligand and one SCN ligand, whereas in compound 2 , the HgII atom is surrounded by two L ligands. In addition, 1D chains formed by metal–π interactions are connected to each other by C–H ··· π stacking interactions in the structure of 1 , which results in a 2D architecture. An interesting feature of compound 2 is the presence of C–H ··· π edge‐to‐face interactions.  相似文献   

5.
Three new coordination compounds, [Pb(HBDC‐I4)2(DMF)4]( 1 ) and [M(BDC‐I4)(MeOH)2(DMF)2]n (M = ZnII for 2 and MnII for ( 3 ) (H2BDC‐I4 = 2, 3, 5, 6‐tetraiodo‐1, 4‐benzenedicarboxylic acid), were synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, and X‐ray single crystal structure analysis. Single‐crystal X‐ray diffraction reveals that 1 crystallizes in the monoclinic space group C2/c and has a discrete mononuclear structure, which is further assembled to form a two‐dimensional (2D) layer through intermolecular O–H ··· O and C–H ··· O hydrogen bonding interactions. The isostructural compounds 2 and 3 crystallize in the space group P21/c and have similar one‐dimensional (1D) chain structures that are extended into three‐dimensional (3D) supramolecular networks by interchain C–H ··· π interactions. The PbII and ZnII complexes 1 and 2 display similar emissions at 472 nm in the solid state, which essentially are intraligand transitions.  相似文献   

6.
The reaction of Hppko (Hppko = phenyl 2‐pyridyl ketone oxime) and CoCl2 · 6H2O in the CH3OH solvent with the presence of triethylamine (NEt3) at room temperature and the exposure to air resulted in the formation of a new pentanuclear, mixed‐valence cobalt complex with the molecular formula [{CoII(CH3O)3}2{CoIII33‐O)(ppko)3}Cl2]. X‐ray single crystal analysis displays a trigonal bipyramid configuration with the terminal two CoII ions wrapping an triangle [CoIII3O]7+ core. The intermolecular C–H ··· O and C–H ··· Cl interactions form a 2D network framework. The analysis of magnetic susceptibility revealed the dominant antiferromagnetic interactions and strong orbital contribution of CoII ions.  相似文献   

7.
Two new binuclear cobalt(II) complexes, [Co2 L1 (μ2‐DPP)]2+ ( 1 ) (H L1 = N, N, N′, N′‐ tetrakis (2‐benzimidazolylmethyl)‐2‐hydroxyl ‐1,3‐diaminopropane; DPP = diphenylphosphinate) and [Co2 L2 (μ2‐BNPP)2]+ ( 2 ) (H L2 = 2,6‐bis‐[N,N‐di(2‐ pyridylmethyl)aminomethyl]‐4‐methylphenol, BNPP = bis(4‐nitrophenyl)phosphate) have been synthesized and their crystal structures and magnetic properties are shown. In 1 , each CoII atom has a distorted trigonal bipyramidal coordination sphere with a N3O2 donor set and the central two CoII atoms are bridged by one alkoxo‐O atom and one μ2‐DPP ion with the Co1‐Co2 separation of 3.542Å. In 2 , each CoII atom has a pseudo octahedral environment with a N3O3 donor set and the central two CoII atoms are bridged by a phenolic oxygen atom of L2 and two μ2‐BNPP ions with the Co1‐Co2 separation of 3.667Å. Susceptibility data of 1 and 2 indicate intramolecular antiferromagnetic coupling of the high‐spin CoII atoms.  相似文献   

8.
The title ligand, [1‐(2‐methoxyphenyl)‐3‐(4‐chlorophenyl)]triazene, H L ( 1 ), was prepared. In a reaction with Hg(NO3)2 it forms the complex [Hg(C26H22Cl2N6O2)], [Hg L 2] ( 2 ). Both compounds were characterized by means of X‐ray crystallography, CHN analysis, FT‐IR, 1H NMR, and 13C NMR spectroscopy. In the structure of compound 1 , two independent fragments are present in the unit cell. They exhibit trans arrangement about the –N=N– double bond. The dihedral angles between two benzene rings in both fragments are 4.36 and 18.79 Å, respectively. Non‐classic C–H ··· N hydrogen bonding and C–H ··· π interactions form a layer structure along the crystallographic ab plane [110]. In compound 2 , the HgII atom is hexacoordinated by two tridentate [1‐(2‐methoxyphenyl)‐3‐(4‐chlorophenyl)]triazenide ligands through a N2O2 set. In addition, in the structure of 2 , monomeric complexes are connected to each other by C–H ··· π stacking interactions, resulting in a 2D architecture. These C–H ··· π edge‐to‐face interactions are present with H ··· π distances of 3.156 and 3.027 Å. The results of studies of the stoichiometry and formation of complex 2 in methanol solution were found to support its solid state stoichiometry.  相似文献   

9.
Eight metal(II) complexes based on imidazo[4, 5‐f]‐1, 10‐phenanthroline (HIMP) and bridging dicarboxylato ligands such as 4, 4′‐biphenyldicarboxylic acid (H2BPDC), 1, 4‐benzenedicarboxylic acid (H2BDC), thiophene‐2, 5‐dicarboxylic acid (H2TDC), and 2, 6‐naphthalenedicarboxylic acid (H2NDC) were hydrothermally synthesized and structurally characterized by single‐crystal X‐ray diffraction. Complexes 1 , 3 , 6 , and 7 are molecular dinuclear metal complexes. Complexes 2 , 4 , and 5 exhibit chain‐like structures. Compound 8 shows a novel 3D architecture, in which ZnII dimers are connected by four NDC2– anions. In the metal(II) complexes, HIMP exhibits a similar chelating coordination mode. Different π ··· π stacking interactions are observed in the complexes. The emission of HIMP is completely quenched in complexes 1 – 4 due to the strong π ··· π stacking interactions in the structures. Complexes 5 – 8 exhibit different photoluminescence properties. Firstly, we quantitatively investigated the effect of the strong HIMP–HIMP stacking interactions on the emission quenching of HIMP in the metal complexes. It was found that a higher extent of π ··· π stacking interactions in the complexes resulted in a higher extent of the emission quenching of HIMP. The introduction of aromatic conjugated carboxylate groups into metal(II)‐HIMP complexes changed the extent of the strong π ··· π stacking interactions in the structures and thus the photoluminescence properties of the complexes.  相似文献   

10.
A novel naphthalenediol‐based bis(salamo)‐type tetraoxime compound (H4L) was designed and synthesized. Two new supramolecular complexes, [Cu3(L)(μ‐OAc)2] and [Co3(L)(μ‐OAc)2(MeOH)2]·4CHCl3 were synthesized by the reaction of H4L with Cu(II) acetate dihydrate and Co(II) acetate dihydrate, respectively, and were characterized by elemental analyses and X‐ray crystallography. In the Cu(II) complex, Cu1 and Cu2 atoms located in the N2O2 sites, and are both penta‐coordinated, and Cu3 atom is also penta‐coordinated by five oxygen atoms. All the three Cu(II) atoms have geometries of slightly distorted tetragonal pyramid. In the Co(II) complex, Co1 and Co3 atoms located in the N2O2 sites, and are both penta‐coordinated with geometries of slightly distorted triangular bipyramid and distorted tetragonal pyramid, respectively, while Co2 atom is hexa‐coordinated by six oxygen atoms with a geometry of slightly distorted octahedron. These self‐assembling complexes form different dimensional supramolecular structures through inter‐ and intra‐molecular hydrogen bonds. The coordination bond cleavages of the two complexes have occurred upon the addition of the H+, and have reformed again via the neutralization effect of the OH?. The changes of the two complexes response to the H+/OH? have observed in the UV–Vis and 1H NMR spectra.  相似文献   

11.
Summary Several new coordination compounds are reported withN-carbamoylpyrazole (Hcpz) as the ligand;viz. M(cpz)2 where M = CuII and NiII; M(Hcpz)Cl2 where M = MnII, CoII, CuII, ZnII and CdII; M(Hcpz)2Cl2 Where M = FeII, CoII and NiII: M(Hcpz)3(BF4)2 where M = FeII, CoII, NiII, ZnII and CdII; and Cu(Hcpz)2(BF4)2. In the salts, Hcpz is coordinated through the nitrogen atoms of the pyrazole ring and the nitrogen atom of the carbamoyl group. In the Hcpz complexes, coordination takes place through the nitrogen atom of the pyrazole ring and the oxygen atom of the carbamoyl group.  相似文献   

12.
Reaction of a imidazole phenol ligand 4‐(imidazlo‐1‐yl)phenol (L) with 3d metal salts afforded four complexes, namely, [Ni(L)6] · (NO3)2 ( 1 ), [Cu(L)4(H2O)] · (NO3)2 · (H2O)5 ( 2 ), [Zn(L)4(H2O)] · (NO3)2 · (H2O) ( 3 ), and [Ag2(L)4] · SO4 ( 4 ). All complexes are composed of monomeric units with diverse coordination arrangements and corresponding anions. All the hydroxyl groups of monomeric cations are used as hydrogen‐bond donors to form O–H ··· O hydrogen bonds. However, the coordination habit of different metal ions produces various supramolecular structures. The NiII atom shows octahedral arrangement in 1 , featuring a 3D twofold inclined interpenetrated network through O–H ··· O hydrogen bond and π–π stacking interaction. The CuII atom of 2 displays square pyramidal environment. The O–H ··· O hydrogen bond from the [Cu(L)4(H2O)]2+ cation and lattice water molecule as well as π–π stacking produce one‐dimensional open channels. NO3 ions and lattice water molecules are located in the channels. 3 is a 3D supramolecular network, in which ZnII has a trigonal bipyramid arrangement. Two different rings intertwined with each other are observed. The AgI in 4 has linear and triangular coordination arrangements. The mononuclear units are assembled into a 1D chain by hydrogen bonding interaction from coordination units and SO42– anions.  相似文献   

13.
Two new ZnII coordination polymers (CPs), [Zn2(SA)2(L)2]n ( 1 ) and [Zn(AA)(L)]n ( 2 ) [L = 1,6‐bis(benzimidazol‐1‐yl)hexane, H2SA = succinic acid, H2AA = adipic acid], were synthesized via hydrothermal method and characterized by elemental analysis, infrared spectroscopy, and single‐crystal X‐ray diffraction. CP 1 possesses a sql network, which is further extended into a 3D supramolecular skeleton by non‐classical C–H ··· O hydrogen bonding interactions. CP 2 exhibits a 1D linear chain, which is further assembled into a 2D supramolecular layer by π ··· π stacking interactions. The solid state fluorescence properties of two ZnII CPs were investigated. Both CPs present high photocatalytic activities for the degradation of methylene blue (MB) under UV light irradiation. The photodegradation efficiency using CP 1 as catalyst is 91.3 % and using CP 2 as catalyst is 85.0 %, respectively.  相似文献   

14.
Two novel five‐coordinate zinc(II) complexes with the tripod ligand tris(N‐methylbenzimidazol‐2‐ylmethyl)amine (Mentb) and two different α,β‐unsaturated carboxylates, with the composition [Zn(Mentb)(acrylate)] (ClO4)·DMF·1.5CH3OH ( 1 ) and [Zn(Mentb)(cinnamate)](ClO4)·2DMF·0.5CH3OH ( 2 ), were synthesized and characterized by means of elemental analyses, electrical conductivity measurements, IR, UV, and 1H NMR spectra. The crystal structure of two complexes have been determined by a single‐crystal X‐ray diffraction method, and show that the ZnII atom is bonded to a Mentb ligand and a α,β‐unsaturated carboxylate molecule through four N atoms and one O atom, resulting in a distorted trigonal‐bipyramidal coordination [τ( 1 ) = 0.853, τ( 2 ) = 0.855], with approximate C3 symmetry.  相似文献   

15.
The metal‐organic complexes Co2(terpy)2(btec)·H2O 1 (terpy = 2,2′:6′,2″‐terpyridine, btec = 1,2,4,5‐benzenetetracarboxylate) was synthesized by hydrothermal synthesis method, using 1,2,4,5‐benzenetetracarbonitrile, terpy and CoAc2·4H2O. Single crystal X‐ray diffraction showed that each btec4– ligand links four CoII atoms and each CoII atom links to two btec4– ligands forming a 1D double‐chain structure. Furthermore, the chains pack together through short face–face π–π interactions forming a 3D supramolecular structure. Additionally, the magnetic measurements show antiferromagnetic interactions among metal ions for compound 1 .  相似文献   

16.
The asymmetric Salamo‐type N2O2 ligand H2L and its corresponding CuII and ZnII complexes [CuL] and [{ZnL}2]·2CH3CN were synthesized and structurally characterized. Crystallographic data of the CuII complex revealed that the CuII ion is tetracoordinate with a slightly distorted square planar arrangement forming a 2D supramolecular plane structure by hydrogen bonding and π···π stacking interactions. In the ZnII complex, the ZnII ions are pentacoordinate in N2O2 tetradentate fashion and intermolecular contacts between ZnII and oxygen atoms result in a head‐to‐tail dimer. The ZnII ions were found to have slightly distorted square pyramidal and trigonal bipyramidal arrangements, respectively. Hydrogen bonding interactions stabilized the ZnII complex to facilitate self‐assembly to a 1D linear chain. The CuII and ZnII complexes show intense photoluminescence with maximum emissions at approx. 426 and 411 nm upon excitation at 360 and 350 nm, respectively.  相似文献   

17.
Transition metal complexes of arginine (using Co(II), Ni(II), Cu(II) and Zn(II) cations separately) were synthesized and characterized by FTIR, TG/DTA‐DrTG, UV‐Vis spectroscopy and elemental analysis methods. Cu(II)‐Arg complex crystals was found suitable for x‐ray diffraction studies. It was contained, one mole CuII and Na+ ions, two arginate ligands, one coordinated aqua ligand and one solvent NO3? group in the asymmetric unit. The principle coordination sites of metal atom have been occupied by two N atoms of arginate ligands, two carboxylate O atoms, while the apical site was occupied by one O atom for CuII cation and two O atoms for CoII, NiII, ZnII atoms of aqua ligands. Although CuII ion adopts a square pyramidal geometry of the structure. CoII, NiII, ZnII cations have octahedral due to coordination number of these metals. Neighbouring chains were linked together to form a three‐dimensional network via hydrogen‐bonding between coordinated water molecule, amino atoms and O atoms of the bridging carboxylate groups. CuII complex was crystallized in the monoclinic space group P21, a = 8.4407(5) Å, b = 12.0976(5) Å, c = 10.2448(6) Å, V = 1041.03(10) Å3, Z = 2. Structures of the other metal complexes were similar to CuII complex, because of their spectroscopic studies have in agreement with each other. Copper complex has shown DNA like helix chain structure. Lastly, anti‐bacterial, anti‐microbial and anti‐fungal biological activities of complexes were investigated.  相似文献   

18.
Complexes of N-phthaloylglycinate (N-phthgly) and CoII, NiII, CuII, ZnII and CdII containing imidazole (imi), N-methylimidazole (mimi), 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), and tridentate amines such as 2,2,2-terpyridine (terpy) and 2,4,6-(2-pyridyl)s-triazine (tptz), were prepared and characterized by conventional methods, i.r. spectra and by thermogravimetric analysis. For imi and mimi ternary complexes, the general formula [M(imi/mimi)2(N-phthgly)2nH2O, where M = CoII, NiII, CuII and ZnII applies. For CdII ternary complexes with imi, [Cd(imi)3(N-phthgly)2]·2H2O applies. For the bi and tridentate ligands, ternary complexes of the formula [M(L)(N-phthgly)2nH2O were obtained, where M = CoII, NiII, CuII and ZnII; L = bipy, phen, tptz and terpy. In all complexes, N-phthgly acts as a monodentate ligand, coordinating metal ions through the carboxylate oxygen, except for the ternary complexes of CoII, NiII and CuII with mimi and CuII and ZnII with imi, where the N-phthgly acts as a bidentate ligand, coordinating the metal ions through both carboxylate oxygen atoms.  相似文献   

19.
The asymmetric unit in the crystal structure of the title compound, [Zn2(C16H14N2S2)2]2·0.18C2H6OS·0.82CH3OH, consists of two ordered bis{μ‐2,2′‐[(butane‐2,3‐diylidene)bis(azanylylidene)]dibenzenethiolato}dizinc(II) molecules and a disordered solvent combination at the same location which refined to 18.1 (7)% dimethyl sulfoxide and 81.9 (7)% methanol. The compound has a metallic cluster structure formed by the joining together of two zinc(II) complex molecules, forming a rhomboidal Zn2S2 arrangement. This complex was previously suggested on the basis of nonstructural evidence to be a monomer [Jadamus, Fernando & Freiser (1964). J. Am. Chem. Soc. 86 , 3056–3059]. Each ZnII atom is five‐coordinated and exhibits distorted trigonal bipyramidal geometry. The structure may be of interest with respect to zinc–thiolate bonds, the coordination chemistry of Schiff bases and the folding of proteins. The structure displays weak intermolecular C—H...S, C—H...O and C—H...N interactions, and contains a unique bonding arrangement of the ligands around the Zn2S2 rhomboid.  相似文献   

20.
The compounds [Cu(pmda)(crea)]·H2O ( 1 ), [Zn(pmda)(crea)]·H2O ( 2 ) and [Co(pmda)(crea)(H2O)]·H2O ( 3 ) were prepared and characterized by thermal, spectral and X‐ray diffraction methods. In compounds 1 and 2 the MII coordination is of type 4+1 and approaches to a trigonal bipyramid (71.85 and 86.18 %, respectively) with rather linear N(pmda)‐MII‐N(crea) trans‐apical angles, but with different longest coordination bond (Cu‐O(pmda) or Zn‐N(apliphatic, pmda), respectively). Both compounds are isotypic and one intra‐molecular interligand N‐H···O interaction reinforces the molecular recogniton crea‐MII(pmda) chelate. In contrast, the compound 3 exhibits an octahedral coordination, imposed by the 3d7 electronic configuration of the cobalt(II) atom, and the crea‐chelate recognition involves the Co‐N(crea) coordination bond and one intramolecular ‘bifurcated’ H‐bonding interaction between one N‐H(crea) bond and one O(pmda) plus the O(aqua) atoms as ‘acceptors’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号