首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 988 毫秒
1.
The voltammetric behaviour of the new complex, [Ru(NO)(Ph2PCH2CH2CH2PPh2)2]+, has been studied in 1,2-dimethoxyethane and the results compared with those obtained in the analogous reduction of [Ru(NO)(Ph2PCH2PPh2)2]+. The reduction proceeds in two reversible, one-electron steps. Stepwise reduction of these cationic complexes leads to two reversible, one-electron steps. Stepwise reduction of these cationic complexes leads to anionic complexes with formal oxidation number (?II) through the intermediate state which, in the case of Ph2PCH2CH2PPh2 ligand, is unstable and decays via a disproportionation pathway. A reduction-oxidation mechanism accounting for the chemical and electrochemical results is proposed.  相似文献   

2.
Treatment of a THF solution of trans-[ReCl(N2)(dppe)2] (dppe = Ph2PCH2CH2PPh2) with NO, in the presence of Tl[BF4], forms trans-[Re(NO)2(dppe)2][BF4], a rare formal 20-electron d8-rhenium nitrosyl complex which, by reaction with HX (X = BF4, Cl or HSO4), gives trans-[ReF(NO)(dppe)2][BF4] (2) (the X-ray structure of which is reported) or trans-[ReX(NO)(dppe)2]X (3, X = Cl or HSO4), respectively, as well as nitrous oxide.  相似文献   

3.
Transition metal complexes containing two types of ligands: 5-phenyl-1,3,4-oxadiazole-2-thione ion (L) and tertiary phosphines, have been prepared. The complexes, [ML2A2] [M = Pd or Pt; A = PPh3 or Ph2PCH2CH2P(O)Ph2] and [ML2B] (M = Co, Ni, Pd or Pt; B = Ph2PCH2PPh2 or Ph2PCH2CH2PPh2), were characterized by elemental analysis, molar conductance, i.r., u.v.–vis., 31P-n.m.r., magnetic susceptibility measurements and mass spectra.  相似文献   

4.
A reaction of the potassium salts of RC(S)NHP(S)(OiPr)2 (R = PhNH, HL I; Ph, HL II) with a mixture of AgNO3 and Ph2P(CH2)1 − 3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Ag2(Ph2PCH2PPh2)2LINO3] ( 1 ), [Ag{Ph2P (CH2)2PPh2}LI,II] ( 2, 6 ), [Ag{Ph2P(CH2)3PPh2}LI,II] ( 3, 7 ), [Ag{Ph2P(C5H4FeC5H4)PPh2}LI,II] ( 4, 8 ), and [Ag2(Ph2PCH2PPh2)LII2] ( 5 ) complexes. The structures of these compounds were investigated by 1H and 31P{1H} NMR spectroscopy and elemental analyses. It was established that the binuclear complexes 1 and 5 are luminescent in the solid state at ambient conditions. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:386–391, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20627  相似文献   

5.
By reacting [Pd( )(μ-Cl)]2 with AgClO4 in NCMe, the corresponding cationic complexes [Pd( )(NCMe)2]ClO4 ( = phenylazophenyl-C2,N1; dimethylbenzylamine-C2,N; 8-methylquinoline-C8,N) can be obtained. Solutions containing the cations [Pd( )(S)2]+ are obtained when the reaction is carried out in tetrahydrofuran or acetone (S). The treatment of these solutions with bidentate ligands (L—L) (Ph2PCH2PPh2,Ph2PNHPPh2 or Ph2PCH2PPh2CHC(O)Ph) gives the mononuclear [Pd( )(L3l)]ClO4 complexes, with L3l acting as a chelate ligand. On the other hand [Pd( (μ-Cl)]2 reacts with L3l (Ph2PCH2PPh2, Ph2PNHPPh2) yielding [Pd( )Cl(L3l)] with L3l acting as monodentate. The reactions between [Pd( )(NCMe)2]ClO4 and 2,2′-bipyrimidyl give rise to the formation of the mononuclear [Pd( ) (bipym)]ClO4 or binuclear [Pd2( )2(μ-bipym)](ClO4)2, [( )Pd(μ-bipym)Pd( )](ClO4)2 derivatives. Finally [Pd( )Cldppm] (dppm = Ph2PCH2PPh2) react with NaH producing the neutral complexes [Pd( )(ddppm)] (ddppm = Ph2PCHPPh2) which by reaction with HCl lead again to the starting materials [Pd( )Cl(dppm)].  相似文献   

6.
The reactions of PdCI2(L-L) [L-L = Ph2PCH2PPh2(dppm), Ph2PCH2CH2PPh2(dppe) and Ph2PCH2CH2CH2PPh2(dppp)] with equivalent amount of (Ph2P(S)NHP(S)Ph2)(dppaS2) gave the complexes [Pd(L-L)(dppaS2-H)]ClO4 [L-L = dppm (1), dppe (2), dppp (3)]. The different synthetic route was used for complex 2 by using of Pd(dppe)Cl2 and K[N(PSPh2)2] as starting materials (2a). All of these complexes have been characterized 31P{1H} NMR, IR and elemental analyses. The complexes 2, 2a and 3 were crystallographically characterized. The coordination geometry around the Pd atoms in these complexes distorted square planar. Six membered dppaS2-H rings are twist boat conformations in three complexes.  相似文献   

7.
Compounds of the type [XM(CO)2(ν-allyl)L2] (where X = Cl and Br; M = Mo and W; L2 = Ph2PCH2PPh2 and Ph2 PCH2CH2PPh2) have been prepard from the corersponding MeCN complexes. The spectral properties of these compounds and the effects of chelate rign size on 31P coordination shifts and J(183W—31P) have been investigated.  相似文献   

8.
Summary The preparation, structural study and chemical behaviour of new cationic, monoanionic and dianionic tetracoordinate nickel(I) complexes of the types: [NiL4][BPh4] (L=PPh3, AsPh3 or SbPh3), [PR4][NiX2L2] (X=Cl, Br or I; L=PPh3, AsPh3 or SbPh3 and [PR4]+=PPh4, Ph3PCH2Ph or Ph3PEt) and [PR4]2[NiX3L] (X=Cl, Br or I; L=PPh3 and [PR4]+=PPh4 or PPh3CH2Ph) are described.  相似文献   

9.
The behavior of the phosphine-phosphine sulfide complexes of silver, [Ph2P(S)(CH2) n PPh2] m ·AgNO3 (n=2 or 4;m=1 or 2), in pyridine was studied. Dissolution of the 1:1 complexes in pyridine leads to destruction of their dimeric structures Ag2[Ph2P(S)(CH2) n PPh2]2(NO3)2 (A) to form the complexes Agpy +−P(Ph2)(CH2) n Ph2P=S and Agpy +−S=PPh2(CH2) n PPh2. The solid complexes isolated from pyridine restore dimeric structure A. According to the data of X-ray diffraction analysis, the 1:2 complex isolated from pyridine has the structure [S=P(Ph2)(CH2)2(Ph2)P−(NO3)Ag(Py)−P(Ph2) (CH2)2(Ph2)P=S]Py. According to the data of IR spectroscopy, dissolution of this complex in chloroform leads to the formation of the dimeric structure Ag2Ph2P(S)(CH2)2PPh2]4(NO3)2. Deceased. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1751–1758, September, 1998.  相似文献   

10.
Summary The synthesis and characterisation of products obtained by the interaction between [Ir(NO)(MeCN)2(PPh3)2]2+ and 2-aminophenol derivatives are reported. Tetracoordinate d8complexes of the type Ir(NO)(2-ap)(PPh3) and pentacoordinate d complexes6of the type [Ir(2-ap)(PPh3)3]+ where 2-ap=2-aminophenol, 2-amino-4-nitrophenol, 2-amino-5-methylphenol, 2-3-aminonaphthol and 2-amino-4-methylphenol are obtained. The Ir(NO)(PPh3)3 complex is always present as a byproduct. Physical properties, i.r. spectra and conductivity data of the complexes are tabulated. Reaction schemes for the formation of the three complexes are proposed and discussed.  相似文献   

11.
Treatment of Au2(Ph2PCH2CH2PPh2)Cl2 with one equivalent of the [Ru5C(CO)14]2− dianion in the presence of TlPF6 gives Ru5C(CO)14Au2(Ph2PCH2CH2PPh2) (1) in good yield and the [{Ru5C(CO)14}2Au2(Ph2PCH2CH2PPh2)]2− (2) anion in low yield. Complex 2 becomes the major product if 2 equivalents of [Ru5C(CO)14]2− are used. Reaction of [Au2(Ph2PCH2CH2PPh2)Cl2] with 3 equivalents of [H3Os4(CO)12] anion in the presence of TlPF6 affords {H3Os4(CO)12}2Au2(Ph2PCH2CH2PPh2) (3) in reasonable yield. X-ray diffraction studies of 1 and 3 show that they contain the [Au2(Ph2PCH2CH2PPh2)]2+ fragment in different coordination modes.  相似文献   

12.
The P-functional organotin chloride Ph2PCH2CH2SnCl3 reacts with [(COD)MCl2] and trans-[(Et2S)2MCl2] (M=Pd, Pt) in molar ratio 1:1 to the zwitterionic complexes [(COD)M+(Cl)(PPh2CH2CH2SnCl4)] (1: M=Pd; 2: M=Pt) and trans-[(Et2S)2M+(Cl)(PPh2CH2CH2SnCl4)] (3: M=Pd; 4: M=Pt). The same reaction with [(COD)Pd(Cl)Me] yields under transfer of the methyl group from palladium to tin the complex [(COD)M+(Cl)(PPh2CH2CH2SnMeCl3)] (5) which changes in acetone into the dimeric adduct [Cl2Pd(PPh2CH2CH2SnMeCl2·2Me2CO)]2 (6). In molar ratio 2:1 Ph2PCH2CH2SnCl3 reacts with [(COD)MCl2] to the complexes [Cl2Pd(PPh2CH2CH2SnCl3)2] (7: M=Pd, mixture of cis/trans isomer; 8: M=Pt, cis isomer). In a subsequent reaction 8 is transformed in acetone into the 16-membered heterocyclic complex cis-[Cl2Pt(PPh2CH2CH2)2SnCl2]2 (9). trans-[(Et2S)2PtCl2] and Ph2PCH2CH2SnCl3 in molar ratio 1:2 yields the zwitterionic complex [(Et2S)M+(Cl)(PPh2CH2CH2SnCl3)(PPh2CH2CH2SnCl4)] (10). The results of crystal structure analyses of 1, 3, 6, 9 and of the adduct of the trans-isomer of 7 with acetone (7a) are reported. 31P- and 119Sn-NMR data of the complexes are discussed.  相似文献   

13.
cis-PtCl(CH2CN)(PPh3)2 was obtained by the reaction of Pt(PPh3)4 with ClCH2CN in acetone. A solution of Pt(PPh3)4 and ClCH2CN in benzene was heated under reflux to give trans-PtCl(CH2CN)(PPh3)2. The reaction of the trans-isomer with Br?, I?, Ph2PCH2CH2 PPh2, Ph2PCH2CH2AsPh2 and cisPh2PCHCHPPh2 has been examined. The trans-influence of a ligand trans to the CH2CN group seems to be indicated by the 2J(PtH) of the CH2CN protons. The τ values of trans-PtX(CH2CN)(PPh3)2 and PtX(CH2 CN)(PP) (X = Cl, Br, I) are related by a linear function.  相似文献   

14.
Several (diolefin)M(A) complexes (M = Rh, Ir) were prepared, where AH is 1-phenyl-3-methyl- 4-benzoylpyrazolone-5, a very stable asymmetric analogue of acetylacetone. In these complexes the diolefin could be replaced by one mole of (Ph2PCH2CH2)2, two of CO or of PPh3, or three of CNBut, while 1,10-phenanthroline displaced the chelating ligand to yield [(cyclooctadiene)Rh(phen)]+ (A)?. Some compounds X?Y (X?Y = iodine or MeI) added oxidatively yielding the corresponding trivalent species. Using 31P NMR spectra the presence of the expected steric isomers was detected in (Ph3P)(CO)Rh(A) and in (Ph3P) (CO)Rh(A)(X)(Y).  相似文献   

15.
The PPh2P(S)NHP(S)PPh2 (dppaS2) ligand reacts with the starting complexes PtCl2(L-L) (L-L = Ph2PCH2PPh2), (dppm), Ph2PCH2CH2PPh2 (dppe), Ph2PCH2CH2CH2PPh2 (dppp), and NaClO4·H2O. Final products are monomeric complexes, and their formulas are [Pt(L-L)(dppaS2-H)] [(L-L = dppm(1), dppe(2), dppp(3)]. All of these have been characterized by 1H, 13C,31{P1H} NMR, FTIR, and elemental analysis. These complexes were also examined by TGA, DTA, and DSC analysis. Complexes 2 and 3 were crystallographically characterized.  相似文献   

16.
Summary Rhodium(I), iridium(I), palladium(II) and platinum(II) complexes of the phosphinoamide ligands, Ph2PCH2CONHR (R = H, HDPA; Me, MDPA; Ph, PDPA) were prepared and characterized by using conductivity data, i.r., 1H and 31P(H) n.m.r. spectral data. Reaction of the ligands with MCl(PPh3)3 and MCl(CO)(PPh3)2 (M = Rh, Ir) in CH2Cl2 under reflux lead to the formation of MCl(PPh3)2 [Ph2PCH2C(O)NHR] and MCl(CO)(PPh3)[Ph2PCH2–C(O)HNR] respectively. The reaction of either K2MCl4 or cis-MCl2(PPh3)2 affords complexes of the type cis-MCl2[Ph2PCH2C(O)NHR]2 (M = Pd, Pt). A similar product results even from the reaction of phosphinoamides with cis-platin. Possible structures are proposed for the complexes based on their physicochemical data  相似文献   

17.
[Fe(CO)3 L2] (L = PPh3, PPh2Me, P(OPh)3 or P(NMe2)3; L2 = Ph2 PCH2 CH2 PPh2+) undergo reversible one-electron oxidations to give the radical cations [Fe(CO)3L2]+ which have been studied by IR and ESR spectroscopy.  相似文献   

18.
The preparation of the nucleophile trans-[RuCl(NO)( 1 )], where 1 is the bidentate ligand Ph2PCH2C18CH2PPh2, and of the five-coordinate species [RuCl(CO)(NO)( 1 )], [RuCl(CO)(NO)(Ph2PCH2Ph)2] and [RuCl(NO)( 2 )( 1 )] are reported. The crystal structure of [RuCl(CO)(NO)( 1 )] shows that the coordination around the metal atom is distorted trigonal bipyramidal with the phosphorus atoms in axial positions. The Ru? N? O bond angle is 142.8°. 1H- and 31P-NMR. and \documentclass{article}\pagestyle{empty}\begin{document}$ \tilde \nu $\end{document}NO IR.-data for the above complexes are reported and related to the coordination geometry.  相似文献   

19.
Trends in 31P NMR coordination shifts for the complexes M(CO)3BrL2, [M(CO)3L2(NCMe)]+, MeC5H4Mn(CO)L2 and [MeC5H4Mn(CO)2]2L2 (M = Mn and Re;L2 = Ph2PCH2PPh2, Ph2PCH2CH2PPh2 and Ph2PCH2CH2AsPh2) are discussed.  相似文献   

20.
Cationic nickel(II) complexes containing chelating O,O′-donor maltolate or ethyl maltolate ligands in conjunction with bidentate bisphosphine ligands Ph2P(CH2) n PPh2 were prepared by a one-pot reaction starting from nickel(II) acetate, bisphosphine, maltol (or ethyl maltol), and trimethylamine, and isolated as their tetraphenylborate salts. An X-ray structure determination of [Ni(maltolate)(Ph2PCH2CH2PPh2)]BPh4 shows that the maltolate ligand binds asymmetrically to the (slightly distorted) square-planar nickel(II) center. The simplicity of the synthetic method was extended to the synthesis of the known platinum(II) maltolate complex [Pt(maltolate)(PPh3)2]BPh4 which was obtained in high purity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号