首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We earlier reported that intranasal irradiation with the 308 nm xenon chloride (XeCl) ultraviolet-B laser and irradiation with a combination of ultraviolet-B (UVB), ultraviolet-A (UVA) and visible light (VIS) is highly effective in the treatment of allergic rhinitis and inhibit the immediate-type hypersensitivity reaction in the skin. Since photochemotherapy with 8-methoxypsoralen (8-MOP) plus UVA light (PUVA) is widely used in the treatment of different inflammatory skin disorders due to its immunosuppressive effect, in the present study we investigated the efficacy of intranasal PUVA treatment in allergic rhinitis and the effect of PUVA treatment on the skin prick test (SPT) reaction. An open study was performed in 17 patients with hay fever. Intranasal PUVA therapy was given four times weekly for 3 weeks. The treatment was started with a fluence of 0.5x of the individual minimal phototoxic dose (MPD) and the dosages were gradually increased. Evaluation was based on the symptom scores. The effect of PUVA treatment on the allergen-induced wheal formation was also studied in the SPT. PUVA treatment of the nasal cavity significantly decreased the nasal symptoms of the patients with allergic rhinitis. Treatment of the skin with PUVA also significantly suppressed the allergen-induced wheal formation in the SPT reaction. These data suggest that intranasal PUVA phototherapy is also an effective modality in the treatment of allergic rhinitis.  相似文献   

2.
Ultraviolet light phototherapy for allergic rhinitis   总被引:1,自引:0,他引:1  
Phototherapy has a profound immunosuppressive effect and is widely used for the treatment of immune mediated skin diseases. Phototherapy is able to inhibit immediate type hypersensitivity reaction in the skin. Intranasal phototherapy is a new approach for treatment of allergic rhinitis. In two open studies, 308 nm excimer laser and topical PUVA therapy efficiently inhibited clinical symptoms of allergic rhinitis. In a randomized, double-blind study combined low dose UVB, low dose UVA and visible light proved to be effective in reducing symptom scores for sneezing, rhinorrhea, nasal itching and the total nasal score in ragweed allergic patients. Mechanism of action of phototherapy is complex, it reduces the antigen presenting capacity of dendritic cells, induces apoptosis of immune cells and inhibits synthesis and release of pro-inflammatory mediator from several cell types. Therefore, intranasal phototherapy may represent an alternative treatment of allergic rhinitis and other inflammatory and immune mediated mucosal diseases.  相似文献   

3.
We earlier reported that the 308 nm xenon chloride (XeCl) ultraviolet B (UVB) laser is highly effective for the treatment of inflammatory skin diseases. Since UVB irradiation has been shown to exert both local and systemic immunosuppression, we investigated the clinical efficacy of UVB irradiation in allergic rhinitis. In an open study, groups of patients with severe allergic rhinitis received intranasal irradiation with a 308 nm XeCl UVB excimer laser for two weeks. In the low-dose group (n=10), treatment was given twice weekly, starting with 0.25x the individual minimal erythema dose (MED), whereas patients in the medium-dose group (n=8) were treated four times weekly, starting with 0.4x MED. In each group, the dosage was gradually increased. Evaluation was based on the symptom scores. The effect of the XeCl laser on the skin prick test reaction was also studied. In the low-dose group, seven patients completed the study, and there was no improvement in the nasal symptoms. In the medium-dose group, the XeCl UVB irradiation significantly inhibited the rhinorrhoea, the sneezing, the nasal obstruction and the total nasal score (p<0.05). The XeCl UVB excimer laser also inhibited the allergen-induced skin prick test in a dose-dependent manner. These results suggest that the XeCl UVB excimer laser might serve as a new therapeutic tool in the treatment of allergic rhinitis.  相似文献   

4.
Abstract— An immunochemical assay, i.e. sandwich enzyme-linked immunosorbent assay, has been modified to detect UV-induced damage in cellular DNA of monolayer-grown human melanocytes. The method is based on the binding of a monoclonal antibody to single-stranded DNA. The melanocytes derived from human foreskin of skin type II individuals were suspended and exposed to UVA, UVB, solar-simulated light or γ-rays. Following physiological doses of UVA, UVB or solar-simulated light, a dose-related DNA unwinding comprising a considerable number of single-strand breaks (ssb) was observed. No correlation was found between different seeded cell densities or different culturing periods and the UVA sensitivity of the cells. After UVA irradiation, 0.07 ssb/1010 Da/kJ/m2 were detected and after UVB irradiation 1.9 ssb/1010 Da/kJ/m2 were seen. One minimal erythema dose of solar-simulated light induced 2.25 ssb/1010 Da. Our results from melanocytes expressed in ssb/Da DNA are comparable and have the same sensitivity toward UVA as well as toward UVB as nonpigmented skin cells. As low doses of UVA have already been shown to induce detectable numbers of ssb, this assay is of great interest for further investigations about the photoprotecting and/or photosensitizing effects of melanins in human melanocytes derived from different skin types.  相似文献   

5.
PYRIMIDINE DIMER FORMATION IN HUMAN SKIN   总被引:1,自引:0,他引:1  
Cyclobutyl pyrimidine dimers are major photoproducts formed upon irradiation of DNA with ultraviolet light. We have developed a method for detecting as few as one pyrimidine dimer per million bases in about 50 ng of non-radioactive DNA, and have used this method to quantitate dimer yields in human skin DNA exposed in situ to UV. We found that UVA radiation (320–400 nm) produces detectable levels of dimers in the DNA of human skin. We also measured UVB-induced dimer yields in skin of individuals of differing sun sensitivity and found higher yields in individuals with higher UVB minimal erythema doses and greater sun sensitivity. These approaches should provide important information on damage induced in human skin upon exposure to natural or artificial sources of ultraviolet radiation.  相似文献   

6.
Allergic rhinitis is a high-incidence allergic inflammation of the nasal airways that impacts quality of life. Of the numerous therapies used to treat allergic rhinitis, intranasal phototherapy has emerged as a promising new treatment modality for inflammatory airway disease. Phototherapy is widely used for the treatment of immune-mediated skin diseases because its profound immunosuppressive effect inhibits hypersensitivity reactions in the skin. Intranasal phototherapy using a combination of Ultraviolet-A (UVA) and Ultraviolet-B (UVB) plus Visible light (VIS) has been shown to suppress the clinical symptoms of allergic rhinitis, but limited data regarding its adverse effects on the nasal mucosa currently exists. In this study, we demonstrate that UV displays no harmful effects on the nasal mucosa cells of rabbits following 2 weeks of intranasal phototherapy.  相似文献   

7.
Vascular endothelial growth factor (VEGF) is a central regulator of neoangiogenesis in inflammatory and neoplastic conditions. Ultraviolet irradiation is one of the mainstays of dermatological therapy for various inflammatory skin diseases. In the present study we have compared the effects of UV irradiation on the production of VEGF by keratinocytes (KC) and by the KC-derived cell lines A431 and HaCaT. Irradiation of A431 and HaCaT cells with both UVA (10 J/cm2 and 20 J/cm2) and UVB (8 mJ/cm2 and 16 mJ/cm2) led to strong upregulation of VEGF mRNA and protein. Induction of VEGF by UVA and UVB in these cells was mediated by different pathways, i.e. the generation of free radicals and the secretion of (a) soluble factor(s), respectively. Unlike KC-derived cell lines, no increase in VEGF production was observed in KC in primary culture after irradiation with the same UV doses. Increasing the irradiation dose in these cells of UVA to 40 J/cm2 led to a marked decrease in soluble VEGF, whereas doses as high as 32 mJ/cm2 UVB only minimally affected VEGF levels. Reduction of VEGF production by KC might contribute to the effect of UVA irradiation in inflammatory skin diseases. The differential response of primary KC and autonomously growing KC-derived cell lines to the induction of VEGF by UV light could favor neoangiogenesis in the vicinity of epidermal tumor cells in vivo, thereby endowing them with a growth advantage over normal cells.  相似文献   

8.
Abstract— There is limited information about the carcinogenic effect of longwave ultraviolet radiation (UVA: 315-400 nm). In particular very little is known about the relevant genotoxic damage caused by physiological doses of UVA radiation. A general response of cells to DNA damage is a delay or arrest of the cell cycle. Conversely, such cellular responses after UVA irradiation would indicate significant genotoxic damage. The aim of this study is to compare cell cycle kinetics of human fibroblasts after UVC (190-280 nm radiation), UVB (280-315 nm radiation) and UVA irradiation. Changes in the cell cycle kinetics were assessed by bivariate flow cytometric analysis of DNA synthesis and of DNA content. After UVC, UVB or UVA irradiation of human fibroblasts a suppression was seen of bromodeoxyuridine (BrdU) incorporation at all stages of S phase. The magnitude of this suppression appeared dose dependent. Maximum suppression was reached at 5-7 h after UVB exposure and directly after UVA exposure, and normal levels were reached 25 h after UVB and 7 h after UVA exposure. The lowered BrdU uptake corresponded with a lengthening of the S phase. No dramatic changes in percentages of cells in G1, S and G2/M were seen after the various UV irradiations. Apparently, UVA irradiation, like UVB and UVC irradiation, can temporarily inhibit DNA synthesis, which is indicative of genotoxic damage.  相似文献   

9.
The single-cell gel/comet assay is an electrophoretic technique used to detect single-strand breaks in DNA. Damage is assessed examining individual cells under an epifluorescent microscope. UV-induced DNA damage consists mostly of the formation of pyrimidine dimers; therefore, most of the damage cannot be detected using a standard comet assay. The enzyme T4 endonuclease V breaks DNA strands at sites of pyrimidine dimers. The main objective of this work is to evaluate the comet assay to detect UV-induced damage in DNA after an initial treatment of cells with T4 endonuclease V. This work was conducted on Rhodomonas sp. (Cryptophyta), a marine unicellular flagellate. Cells of Rhodomonas sp. were exposed to 12 h visible + ultraviolet-A + ultraviolet-B (VIS + UVA + UVB) and VIS (control), with and without T4 endonuclease V. Cells exposed to VIS + UVA + UVB showed approximately 200% more damage than control if these were treated with T4 endonuclease V. Rhodomonas sp. were exposed to 3, 6, 9 and 12 h of VIS, VIS + UVA and VIS + UVA + UVB. Damage induced by VIS + UVA + UVB as detected by the comet assay increased along with exposure time. However, damage caused by VIS and VIS + UVA remained relatively constant at all times. Results of this study indicate that the comet assay is more sensitive to UV radiation damage when used in conjunction with T4 endonuclease V. This modification of the comet assay can be used as an alternative technique to detect DNA damage in single cells caused by UV radiation.  相似文献   

10.
Albino hairless mice (Skh:HR-l) exposed to sub-erythemal doses of UVB or UVA radiation display physical, visible, and histological alterations. Skin surface replicas, transepidermal water loss, and skin fold thickness were found to change with irradiation. Visibly, the skin wrinkled with UVB and sagged with UVA exposure. These changes were graded on 3-point scales. Histological alterations included tissue thickening, loss of elastic fibers, elastosis, loss of collagen, and increases in muco-substances. The UVB alterations occur to a much lesser extent with an SPF-15 (7% PABA and 3% oxybenzone) sunscreen product. This sunscreen product had little effect on development of UVA-induced changes. However, an efficient UVA sunscreen (Parsol 1789) did reduce the UVA-induced changes. Many of the UVB-induced alterations regressed after UVB irradiation was stopped. No regression in UVA-induced alterations was observed when UVA irradiation was stopped. Qualitatively, the effects with UVA irradiation were like those observed in mouse chronological aging. These models and the convenient physical and visible grading methods described can be used to determine the effectiveness of topical treatments, such as sunscreens.  相似文献   

11.
Ultraviolet (UV) radiation, including both UVB and UVA irradiation, is the major risk factor for causing skin cancer including melanoma. Recently, we have shown that Sesn2, a member of the evolutionarily conserved stress‐inducible protein family Sestrins (Sesn), is upregulated in human melanomas as compared to melanocytes in normal human skin, suggesting an oncogenic role of Sesn2. However, the role of Sesn2 in UVB and UVA response is unknown. Here, we demonstrated that both UVB and UVA induce Sesn2 upregulation in melanocytes and melanoma cells. UVB induces Sesn2 expression through the p53 and AKT3 pathways. Sesn2 negatively regulates UVB‐induced DNA damage repair. In comparison, UVA induces Sesn2 upregulation through mitochondria but not Nrf2. Sesn2 ablation increased UVA‐induced Nrf2 induction and inhibits UVA‐induced ROS production, indicating that Sesn2 acts as an upstream regulator of Nrf2. These findings suggest previously unrecognized mechanisms in melanocyte response to UVB and UVA irradiation and potentially in melanoma formation.  相似文献   

12.
Depletion of cutaneous glutathione by ultraviolet radiation   总被引:1,自引:0,他引:1  
Supplemental antioxidants may have a role in ameliorating or preventing the actinic damage that can lead to cutaneous disorders such as skin cancer, hyperpigmentation, and premature aging. Glutathione is an important endogenous antioxidant and fulfills various protective functions in the skin. Irradiation of hairless mice with short (UVB) or long (UVA) wavelength ultraviolet radiation or with UVA combined with a photosensitizing psoralen (PUVA) can deplete skin glutathione levels. Ultraviolet B irradiation causes rapid transient fluctuations in the epidermal glutathione level and the relative amount present as the oxidized form. Ultraviolet A irradiation can deplete epidermal and dermal glutathione for several hours but requires much higher doses than UVB. PUVA treatments may lead to extensive and prolonged depletions of epidermal and dermal glutathione, the severity of which is dependent on the psoralen dose and may last for several days. These transient depletions, oxidations, and sometimes rapid recoveries of cutaneous glutathione levels are compatible with a role for glutathione as an endogenous photoprotective agent in the skin. Experimental evidence supports such a role: for example severe skin edema develops in mice only after about 50% of the glutathione has been depleted by PUVA treatment. Although different mechanisms are involved in each case, glutathione depletion may contribute to the production of phototoxicity by UVB, UVA, and by PUVA. Understanding the depletion mechanisms may allow the development of strategies aimed at preventing loss of cutaneous glutathione, and at reinforcing the natural protective functions of this critical cell component.  相似文献   

13.
DNA damage profiles have been established in plasmid DNA using purified DNA repair enzymes and a plasmid relaxation assay, following exposure to UVC, UVB, UVA or simulated sunlight (SSL). Cyclobutane pyrimidine dimers (CPDs) are revealed as T4 endonuclease V-sensitive sites, oxidation products at purine and pyrimidine as Fpg- and Nth-sensitive sites, and abasic sites are detected by Nfo protein from Escherichia coli. CPDs are readily detected after UVA exposure, though produced 10(3) and 10(5) times less efficiently than by UVB or UVC, respectively. We demonstrate that CPDs are induced by UVA radiation and not by contaminating UVB wavelengths. Furthermore, they are produced at doses compatible with human exposure and are likely to contribute to the mutagenic specificity of UVA [E. Sage et al., Proc. Natl. Acad. Sci. USA 93 (1996) 176-180]. Oxidative damage is induced with a linear dose dependence, for each region of the solar spectrum, with the exception of oxidized pyrimidine and abasic sites, which are not detectable after UVB irradiation. The distribution of the different classes of photolesions varies markedly, depending on wavelengths. However, the unexpectedly high yield of oxidative lesions, as compared to CPDs, by UVA and SSL led us to investigate their production mechanism. An artificial formation of hydroxyl radicals is observed, which depends on the material of the sample holder used for UVA irradiation and is specific for long UV wavelengths. Our study sheds light on a possible artefact in the production of oxidative damage by UVA radiation. Meanwhile, after eliminating some potential sources of the artefact ratios of CPDs to oxidized purine of three and five upon irradiation with UVA and SSL, respectively, are still observed, whereas these ratios are about 140 and 200 after UVC and UVB irradiation.  相似文献   

14.
Comparative effects of UVA and UVB irradiation on the immune system of fish   总被引:2,自引:0,他引:2  
Aquatic organisms can be harmed by the current levels of solar ultraviolet radiation. We have recently shown that exposure of fish to UVB irradiation alters the functioning of the fish immune system, but the effects of UVA radiation are unknown. The present study continues this work by characterizing UVA irradiation-induced immunological changes in fish. Roach, a cyprinid fish, were exposed to a single dose of either UVA (3.6 J/cm2) or UVB (0.5 J/cm2) irradiation. Both irradiations suppressed transiently mitogen-stimulated proliferation of blood lymphocytes. UVA, but not UVB, decreased hematocrit, plasma protein, and plasma immunoglobulin levels and increased the proportions of blood cells classified as unidentified leukocytes, possibly consisting of UVA-damaged lymphocytes. UVB, but not UVA, altered the functioning of head kidney and blood phagocytes, induced granulocytosis and lymphocytopenia in the blood and increased plasma cortisol concentration. These results imply that both UVA and UVB are potent modulators of the immune defence of fish.  相似文献   

15.
Abstract Effects on lens physiology of UVB and UVA used separately and sequentially were investigated using 4 week old rabbit lenses in organ culture. Narrowband UVB at 0.3 J/cm2= joules/lens (1 h exposure) has little effect on sodium and calcium concentrations in the lens interior or transparency of lenses subsequently cultured for 20 h after a 1 h exposure. With an incident energy of 3 J/cm2 of broadband UVB (295–330 nm), lenses become opaque and slightly swollen with significant ion imbalances during culture over a 1 day period. In contrast, lenses exposed to approximately 6–24 J/cm2 of UVA (330–400 nm) remain transparent after 1 day of culture. Extended culture up to 4 days reveals no signs of opacification. Ion homeostasis and normal lens hydration are also maintained in UVA-irradiated lenses. The presence of 95% oxygen during UVA irradiation is also without effect. Broadband UVA irradiation is damaging, however, if lenses are first exposed to subthreshold doses of narrowband UVB (307 ± 5 nm) irradiation, viz . 0.3 J/cm2. Thus, sequential UVB/UVA irradiation at subthreshold doses causes impaired active cation transport and accumulation of sodium and calcium accompanying lens opacification.  相似文献   

16.
The effect of 8-methoxypsoralen-UVA therapy on the catalysis of histidine to trans-urocanic acid by histidine ammonia lyase (HAL, EC 4.3.1.3) was examined using an enzymatic assay from Sigma-Aldrich where the growth of the trans-urocanic acid peak at 277 nm was monitored. A Rayonet Photochemical Mini Reactor (Model RMR-600) equipped with eight, 3500 Å light sources and a custom UVA filter (Model S-BAL3 2.9 mm), from the Solar Light Company, were used to expose various reaction mixtures to broadband UVA light and UVA/UVB light. A UV-Vis spectrophotometer (Model Shimadzu UV 2540) with a temperature-controlled cell holder (Model TCC240) was used to monitor the growth of the trans-urocanic peak. Results of dark-binding experiments of 8-methoxypsoralen in denatured ethanol indicate no inhibition of enzyme activity due to ethanol but noncompetitive inhibition due to 8-methoxypsoralen. The effects of preirradiated 8-methoxypsoralen, with both broadband UVA and UVA/UVB, indicate that inhibition was due to psoralen-oxidized photoproducts. Inhibition of HAL was found when exposed to broadband UVA/UVB and to a lesser extent when exposed to broadband UVA.  相似文献   

17.
Ketoprofen (KP) is a potent nonsteroidal anti-inflammatory drug. However, application to the skin is problematic because the photosensitizing properties of the benzophenone moiety may cause phototoxic effects when the treated skin region is exposed to UVA light. Using capillary electrophoresis with electrochemical detection we are able to differentiate the peroxides formed during illumination of KP-containing solutions of linoleic acid. Contrary to other profens a high amount of hydrogen peroxide was found among the reaction products. For investigation of the skin damaging effect human keratinocytes were used as models. Cell viability, DNA synthesis efficiency and intracellular concentration of peroxides were determined. Viability and proliferation behavior was not altered under the influence of KP. While lower concentrations of KP (10-100 nM) led to a protection against the UVA-induced (8 J/cm2) cell proliferation damage, higher concentrations (10-100 microM) led to an amplification of the proliferation decrease. With UVB irradiation at relevant doses the effects were lower than using UVA. Furthermore, intracellular peroxide content was increased after UV irradiation and KP addition. In conclusion some efforts have to be done to avoid these side effects in the use of KP for topical or transdermal application.  相似文献   

18.
Cultured melanocytes originating from persons with different skin phototypes were utilized for measurement of endonuclease sensitive sites induced by UVB and the determination of cell survival after UVA or UVB irradiation. During culture, the melanocytes largely maintained their phenotypic characteristics according to their original skin phototype. Total melanin concentrations were 4.9 times higher in the darker skin phototype (IV-VI) melanocytes when compared to the cells from lighter skin phototypes (I-III). Also phaeomelanin contents were higher (2.5 times) in the skin phototype (IV-VI) melanocytes which implies that the cells from light skin types contain less melanin, but a relatively high proportion of phaeomelanin. After UVB irradiation a stronger induction of endonuclease sensitive sites was found for melanocytes with a lower level of total melanin and a high content of pheomelanin. By measuring the clone forming ability in different melanocyte cultures after UVB irradiation, significant better survival was found in case of the cells with the higher melanin content. Despite the large variations in melanin content, no significant difference in survival after UVA irradiation could be demonstrated in this way. Our results suggest a protective effect of melanin for UVB and indicate the importance of the measurements of melanin content and composition when different parameters of UV-induced damage are studied in melanin producing cells.  相似文献   

19.
In studies involving mice in which doses of UVA (320-400 nm) and UVB (290-320 nm) radiation were administered alone or combined sequentially, we observed a protective effect of UVA against UVB-induced erythema/edema and systemic suppression of contact hypersensitivity. The UVA immunoprotection was mediated by the induction of the stress enzyme heme oxygenase-1 (HO-1) in the skin, protection of the cutaneous Th1 cytokines interferon-gamma (IFN-gamma) and IL-12 and inhibition of the UVB-induced expression of the Th2 cytokine IL-10. In this study, we seek evidence for an immunological waveband interaction when UVA and UVB are administered concurrently to hairless mice as occurs during sunlight exposure in humans. A series of spectra providing varying ratios of UVA/UVB were developed, with the UVA ratio increased to approximately 3.5 times the UVA component in solar simulated UV (SSUV). We report that progressively increasing the UVA component of the radiation while maintaining a constant UVB dose resulted in a reduction of both the erythema/edema reaction and the degree of systemic immunosuppression, as measured as contact hypersensitivity. The UVA-enhanced immunoprotection was abrogated in mice treated with a specific HO enzyme inhibitor. UVA-enhanced radiation also upregulated the expression of cutaneous IFN-gamma and IL-12 and inhibited expression of both IL-6 and IL-10, compared with the activity of SSUV. The results were consistent with the previously characterized mechanisms of photoprotection by the UVA waveband alone and suggest that the UVA component of solar UV may have beneficial properties for humans.  相似文献   

20.
Ultraviolet (UV) radiation from sunlight causes skin cancer and inhibits priming of the immune system during vaccination. However the dose related effects of the different components of sunlight (UVA and UVB) are complex and require further investigation. Using ovalbumin as a model protein vaccine with saponin as adjuvant we show that both UVA and UVB can suppress the DTH response to a poorly immunogenic protein. Increasing doses of UVB induced increased levels of immunosuppression and tolerance. UVA however, caused a bi-phasic dose response with intermediate but not low or high doses causing primary immunosuppression. No dose of UVA caused significant tolerance. Similar results were observed in both C57BL/6 and Balb/c mice. Our data confirms the complex immunomodulatory dose effects of UVA and UVB for a protein antigen, and shows that both UVB and UVA can suppress immunity induced by a protein with adjuvant. This highlights the importance of considering sun exposure patterns in the future success of both preventing skin cancer development and enhancing vaccination regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号