首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
The hydrogen bonding structures of room-temperature ionic liquids 1,3-dimethylimidazolium methyl sulfate and 1-butyl-3-methylimidazolium hexafluorophosphate have been studied by infrared spectroscopy. High-pressure infrared spectral profiles and theoretical calculations allow us to make a vibrational assignment of these compounds. The imidazolium C-H bands of 1,3-dimethylimidazolium methyl sulfate display anomalous non-monotonic pressure-induced frequency shifts. This discontinuity in frequency shift is related to enhanced C-H...O hydrogen bonding. This behavior is in contrast with the trend of blue shifts in frequency for the methyl C-H stretching mode at ca. 2960 cm(-1). Our results indicated that the imidazolium C-H groups are more favorable sites for hydrogen bonding than the methyl C-H groups in the pure 1,3-dimethylimidazolium methyl sulfate. Nevertheless, both methyl C-H and imidazolium C-H groups are favorable sites for C-H...O hydrogen bonding in a dilute 1,3-dimethylimidazolium methyl sulfate/D(2)O mixture. Hydrogen bond-like C-H...F interactions were observed between PF(6)(-) and H atoms on the alkyl side chains and imidazolium ring for 1-butyl-3-methylimidazolium hexafluorophosphate.  相似文献   

2.
Very short C-H...O, N-H...O, and O-H...O hydrogen bonds have been generated utilizing the cyclic phosphate [CH2(6-t-Bu-4-Me-C6H2O)2]P(O)OH (1). X-ray structures of (i) 1 (unsolvated, two polymorphs), 1...EtOH, and 1...MeOH, (ii) [imidazolium](+)[CH2(6-t-Bu-4-Me-C6H2O)2PO2](-)...MeOH [2], (iii) [HNC5H4-N=N-C5H4NH](2+)[(CH2(6-t-Bu-4-Me-C6H2O)2PO2)2](2-)...4CH3CN...H2O [3], (v) [K, 18-crown-6](+)[(CH2(6-t-Bu-4-Me-C6H2O)2P(O)OH)(CH2(6-t-Bu-4-Me-C6H2O)2PO2)](-)...2THF [4], (vi) 1...cytosine...MeOH [5], (vii) 1...adenine...1/2MeOH [6], and (viii) 1...S-(-)-proline [7] have been determined. The phosphate 1 in both its forms is a hydrogen-bonded dimer with a short O-H...O distance of 2.481(2) [triclinic form] or 2.507(3) A [monoclinic form]. Compound 2 has a helical structure with a very short C-H...O hydrogen bond involving an imidazolyl C-H and methanol in addition to N-H...O hydrogen bonds. A helical motif is also seen in 5. In 3, an extremely short N-H...O hydrogen bond [N...O 2.558(4) A] is observed. Compounds 6 and 7 also exhibit short N-H...O hydrogen bonds. In 1...EtOH, a 12-membered hydrogen-bonded ring motif, with one of the shortest known O-H...O hydrogen bonds [O...O 2.368(4) A], is present. 1...MeOH is a similar dimer with a very short O(-H)...O bond [2.429(3) A]. In 4, the deprotonated phosphate (anion) and the parent acid are held together by a hydrogen bond on one side and a coordinate/covalent bond to potassium on the other; the O-H...O bond is symmetrical and very strong [O...O 2.397(3) A].  相似文献   

3.
Close interactions of the C(alpha)[bond]H- - -O type have been analyzed via X-ray crystallography and high-pressure infrared spectroscopy. The results demonstrate that the C(alpha)[bond]H- - -O interactions can offer an additional stability to the beta-sheet formation. X-ray structural data suggest that while 1-acetamido-3-(2-pyrimidinyl)-imidazolium bromide exhibits a bilayer stacking, the PF(6)(-) salt reveals a beta-sheetlike pattern. The appearance of the free-NH infrared absorption indicates that the conventional N[bond]H- - -O or N[bond]H- - -N hydrogen bonds do not fully dominate the packing for the PF(6)(-) salt. The high-pressure infrared study suggests that the C(alpha)[bond]H- - -O hydrogen bonds are the important determinants for the stability of the PF(6)(-) salt. This study also verifies that the imidazolium C[bond]H stretching frequency shifts to a longer wavelength upon the formation of the C[bond]H- - -O hydrogen bonds.  相似文献   

4.
Having isolated and characterized a series of sodium cyclopentadienide salts, we have synthesized a number of 1,1'-bis-amino-functionalized ferrocenes, 1,1'-bis-amino-functionalized ferrocene salts, and 1,1'-bis-amino-functionalized ferrocenium salts. Among these are the first crystallographically characterized examples of cyclopentadienyl units containing (piperidin-N-ylethyl)- and (pyrid-2-ylmethyl)cyclopentadienyl side chains. In the cases of some of the ferrocenes, ferrocene salts, and ferrocenium salts, there are some interesting structural features in the solid state. These include C-H...N and C-H...pi cloud interactions as well as N-H...O and N-H...F hydrogen bonds.  相似文献   

5.
Systematic investigation of in-plane hydrogen-bonded complexes of ammonia with partially substituted fluorobenzenes has revealed that fluorobenzene, difluorobenzene, and trifluorobenzene favor formation of cyclic complexes with a C-H...N-H...F-C binding motif. On the other hand, tetrafluorobenzene and pentafluorobenzene favor formation of linear C-H...N hydrogen-bonded complexes. The complete absence of exclusively linear N-H...F hydrogen-bonded complexes for the entire series indicates that C-F bond in fluorobenzenes is a reluctant hydrogen-bond acceptor. However, fluorine does hydrogen bond when cooperatively stabilized with C-H...N hydrogen bonds for the lower fluoro analogues. The propensity of fluorobenzenes to adapt to the C-H...N-H...F-C binding motif decreases with the progressive fluorination of the benzene ring and disappears completely when benzene ring is substituted with five or more fluorine atoms.  相似文献   

6.
Virtual Screening (VS) is a computational technique that allows selection and ranking of possible hits from a library of compounds. We have carried out VS on 128 selected EGFR kinase inhibitors with GOLD and LigandFit. From the experimental crystal structure of the erlotinib-EGFR complex, three key hydrogen bonds were identified as responsible for anchoring the ligand in the active site. These are of the N-H...N, O(w)-H...N, and C-H...O types. Failure to include the hydrogen-bonded water molecule that forms the O(w)-H...N bond leads to incorrect results. Of the three interactions, the C-H...O formed by an activated C-H group is the best conserved. On the basis of the efficacy of these hydrogen bonds, the poses were classified into one of three categories: close, shifted, and misoriented. In the VS context, all three interactions need to be modeled correctly so that correct poses and affinities are obtained, and this happens in ligands of the close variety. Cross scoring wherein the poses from one software are input into another for scoring and consensus scoring wherein the scores from various software packages are weighted are also helpful in obtaining better agreements.  相似文献   

7.
Microhydration effects upon the adenine-uracil (AU) base pair and its radical anion have been investigated by explicitly considering various structures of their mono- and dihydrates at the B3LYP/DZP++ level of theory. For the neutral AU base pair, 5 structures were found for the monohydrate and 14 structures for the dihydrate. In the lowest-energy structures of the neutral mono- and dihydrates, one and two water molecules bind to the AU base pair through a cyclic hydrogen bond via the N(9)-H and N(3) atoms of the adenine moiety, while the lowest-lying anionic mono- and dihydrates have a water molecule which is involved in noncyclic hydrogen bonding via the O4 atom of the uracil unit. Both the vertical detachment energy (VDE) and adiabatic electron affinity (AEA) of the AU base pair are predicted to increase upon hydration. While the VDE and AEA of the unhydrated AU pair are 0.96 and 0.40 eV, respectively, the corresponding predictions for the lowest-lying anionic dihydrates are 1.36 and 0.75 eV, respectively. Because uracil has a greater electron affinity than adenine, an excess electron attached to the AU base pair occupies the pi* orbital of the uracil moiety. When the uracil moiety participates in hydrogen bonding as a hydrogen bond acceptor (e.g., the N(6)-H(6a)...O(4) hydrogen bond between the adenine and uracil bases and the O(w)-H(w)...N and O(w)-H(w)...O hydrogen bonds between the AU pair and the water molecules), the transfer of the negative charge density from the uracil moiety to either the adenine or water molecules efficiently stabilizes the system. In addition, anionic structures which have C-H...O(w) contacts are energetically more favorable than those with N-H...O(w) hydrogen bonds, because the C-H...O(w) contacts do not allow the unfavorable electron density donation from the water to the uracil moiety. This delocalization effect makes the energetic ordering for the anionic hydrates very different from that for the corresponding neutrals.  相似文献   

8.
N,N,N',N'-Tetramethylimidazolidinium dichloride (1-Im-1 2Cl) has been studied as a model system for cation-anion interactions in the interfacial regions of gemini micelles by X-ray crystallography, density functional theory (DFT) calculations, and infrared spectroscopy. Single crystals of 1-Im-1 2Cl contain 1-Im-1 dications, whose five-membered rings adopt a distorted envelope conformation. Eight chloride anions surround each dication, two of which are cradled above and below the five-membered ring (apical) and six of which are dispersed about the periphery of the ring (equatorial). The cations and anions are linked in the solid state by an extensive network of weak C-H...Cl hydrogen bonds that involve all of the H atoms of the dication. The calculated (DFT at the 6-31+G(d) level) structure of the asymmetric unit, which consists of a dication and two apical chloride ions, closely resembles the equivalent unit in the crystal structure with respect to bond distances and angles, the conformation of the 1-Im-1 ring, and the nature and location of the C-H...Cl hydrogen bonds. The calculated IR spectrum predicts a number of absorptions in the 3000 cm(-1) region, assigned as C-H...Cl stretching modes, which are consistent with the presence of an intense band in the observed IR spectrum of the crystals. Over all, this study supports the notion that apical chloride ions interact more strongly with gemini surfactant headgroups by forming multiple hydrogen bonds in ion pairs of a type that cannot be present in the corresponding ion pairs of quaternary headgroups with counterions of single-chain surfactants.  相似文献   

9.
A series of structurally novel anion receptors , , and in which a ferrocene unit and a fluorescent moiety are linked to two imidazolium rings have been designed and prepared from 1,1'-bis(imidazolylmethyl)ferrocene. Their crystal structures revealed that these receptors are capable of incorporating anions such as PF(6)(-) and Br(-). Consequently, the anion binding studies were carried out using various techniques including electrochemistry (CV and OSWV), fluorescence, UV-vis, and (1)H NMR spectroscopy. All the receptors showed a special electrochemical response to the F(-) anion with a remarkable cathodic shift of more than 260 mV and displayed a unique selectivity for F(-) and AcO(-) anions with fluorescence enhancement over various other anions of present interest (Cl(-), Br(-), I(-), HSO(4)(-), H(2)PO(4)(-)). In addition, for receptor , obvious absorption changes were observed when the H(2)PO(4)(-) anion was added while other anions (F(-), Cl(-), Br(-), I(-), AcO(-), HSO(4)(-)) showed only a minor influence on the UV-vis spectra. (1)H NMR titrations demonstrated that receptors and can bind anions through (C-H)(+)X(-) hydrogen bonds and showed strong affinity and high selectivity for the AcO(-) anion in acetonitrile.  相似文献   

10.
用密度泛函理论(DFT)方法在PBE0/6-31+G(d, p)水平上对乙胺、乙二胺分别与电解液中的小分子H2O、HF分子间的相互作用进行理论计算, 并在PBE/TZP 水平上利用能量分解分析(EDA)方法对胺与HF、H2O 结合的II-1、II-2、III-1和III-2模型进行计算分析. 结果表明, 胺类物质都能与HF、H2O形成N…H—F(O)、F(O)…H—N或F(O)…H—C的稳定氢键. 但HF与胺类物质形成的氢键比H2O与胺形成的氢键强, 故胺类物质在电解液中优先稳定HF. 乙二胺与HF、H2O结合的稳定性比乙胺强. 乙胺、乙二胺与HF(H2O)形成的最稳定构型均由F(O)—H…N 和F(O)…H—C 氢键结合形成.  相似文献   

11.
A systematic ab initio study has been carried out to determine the MP2/6-31+G(d,p) structures and EOM-CCSD coupling constants across N-H-F-H-N hydrogen bonds for a series of complexes F(H(3)NH)(2)(+), F(HNNH(2))(2)(+), F(H(2)CNH(2))(2)(+), F(HCNH)(2)(+), and F(FCNH)(2)(+). These complexes have hydrogen bonds with two equivalent N-H donors to F(-). As the basicity of the nitrogen donor decreases, the N-H distance increases and the N-H-F-H-N arrangement changes from linear to bent. As these changes occur and the hydrogen bonds between the ion pairs acquire increased proton-shared character, (2h)J(F)(-)(N) increases in absolute value and (1h)J(H)(-)(F) changes sign. F(H(3)NH)(2)(+) complexes were also optimized as a function of the N-H distance. As this distance increases and the N-H...F hydrogen bonds change from ion-pair to proton-shared to traditional F-H...N hydrogen bonds, (2h)J(F)(-)(N) initially increases and then decreases in absolute value, (1)J(N)(-)(H) decreases in absolute value, and (1h)J(H)(-)(F) changes sign. The signs and magnitudes of these coupling constants computed for F(H(3)NH)(2)(+) at short N-H distances are in agreement with the experimental signs and magnitudes determined for the F(collidineH)(2)(+) complex in solution. However, even when the N-H and F-H distances are taken from the optimized structure of F(collidineH)(2)(+), (2h)J(F)(-)(N) and (1h)J(H)(-)(F) are still too large relative to experiment. When the distances extracted from the experimental NMR data are used, there is excellent agreement between computed and experimental coupling constants. This suggests that the N-H-F hydrogen bonds in the isolated gas-phase F(collidineH)(2)(+) complex have too much proton-shared character relative to those that exist in solution.  相似文献   

12.
Simple complexes connected through C-H...S and C-H...N interactions are investigated: CH4...NH3, C2H4...NH3, C2H2...NH3, CH4...SH2, C2H4...SH2, and C2H2...SH2. Ab initio and DFT calculations are performed (SCF, MP2, B3LYP) using different basis sets up to the MP2/aug-cc-pVQZ//MP2/aug-cc-pVDZ level of approximation. The Bader theory is applied since MP2/6-311++G(d,p) wave functions are used to find and to characterize bond critical points in terms of electron densities and their Laplacians. The influence of hybridization on the properties of C-H...S and C-H...N systems is also studied showing that the strength of such interactions increases in the following order: C(sp3)-H...Y, C(sp2)-H...Y, C(sp)-H...Y, where Y = S, N--it is in line with the previous findings on C-H...O hydrogen bonds. The results also show that CH4...SH2 and C2H4...SH2 complexes should be rather classified as van der Waals interactions and not as hydrogen bonds. The frequency associated with the C-H stretch of C(sp3)-H...S is blue-shifted.  相似文献   

13.
Benzotriazole,N,N’-dimethylpiperazine and N-methylpiperazine were applied to crystallize with 5-sulfosalicylic acid(5-H2SSA),affording three new binary molecular cocrystals [(C6H6N3+).(C7H5O6S-)].H2O(1),[(C6H16N22+)1/2.(C7H5O6S-)].H2O(2) and [(C5H14N22+).(C7H5O6S-)2].3H2O(3) under general conditions.Proton-transferring occurs from acid to nitrogen of N-donor compounds in all compounds 1,2 and 3.Analysis of the hydrogen-bonding synthons and their effects on crystal packing were also presented in the context of crystal engineering and host-guest chemistry.In compound 1,1-D infinite chains are extended to a 2-D layered architecture via strong O-H...O hydrogen bonds and then to a 3-D network by N-H...O interactions.Compound 2 and 3 both have the 1-D chain which is formed by O-H...O bonds and weak C-H...O hydrogen bonds.A common intramolecular S(6) [synthon I] ring is formed by the hydroxyl with the carboxyl group in all three compounds.  相似文献   

14.
Colorless [Au[C(NHMe)(2)](2)]X.H(2)O (X = Cl or Br) crystallize as dimers with Au.Au separations of 3.1231(3) A (Cl salt) and 3.1297(4) A (Br salt) between the linear, two-coordinate cations, and there is no direct interaction of Au(I) with the halide ions which are hydrogen bonded to ligand N-H groups and the water molecules. The luminescence of these dimers occurs at higher energy than that observed in extended chains of the same cation in the corresponding (PF(6))(-) and (BF(4))(-) salts and shows the important effects of aggregation on the observed luminescence.  相似文献   

15.
The N-H...X (X = N,O,S) intramolecular hydrogen bond in the series of 2(2'-heteroaryl)pyrroles and their trifluoroacetyl derivatives is examined by the (1)H, (13)C, (15)N spectroscopy and density functional theory (DFT) calculations. The influence of the hydrogen bond on coupling and shielding constants is considered. It is shown that the N-H...N intramolecular hydrogen bond causes a larger increase in the absolute size of the (1)J(N,H) coupling constant and a larger deshielding of the bridge proton than the N-H...O hydrogen bond. The effect of the N-H...S interaction on the (1)J(N,H) coupling constant and the shielding of the bridge proton is small. The NMR parameter changes in the series of the 2(2'-heteroaryl)pyrroles due to N-H...X hydrogen bond and the series of the 1-vinyl-2-(2'-heteroaryl)-pyrroles due to C-H...X hydrogen bond have the same order. The proximity of the nitrogen, oxygen or sulfur lone pair to the F...H hydrogen bridge quenches the trans-hydrogen bond spin-spin couplings (1h)J(F,H-1) and (2h)J(F,N).  相似文献   

16.
The title compound, 4-hydroxy-2H-1,2-benzothiazine-3-carbohydrazide 1,1-dioxide-oxalohydrazide (1:1), is determined using X-ray diffraction techniques and the molecular structure is also optimized at the B3LYP/6-31G(d,p) level using density functional theory (DFT). The asymmetric unit consists of four independent molecules. The oxalohydrazide molecules have the centre of symmetry at the mid-point of the central C-C bond. Each thiazine ring adopts a half-chair conformation. Intermolecular C-H...O, N-H...O and N-H...N hydrogen bonds produce R 2 2 (10), R 2 2 (13), R 3 3 (12) and R 3 3 (15) rings, which lead to one-dimensional polymeric chains. An extensive three-dimensional supramolecular network of N-H...N, N-H...O, C-H...O and O-H...O hydrogen bonds is responsible for crystal structure stabilization.  相似文献   

17.
The molecular structure and relative stability of different conformers of isolated canonical 2'-deoxyribonucleotides thymidine-5'-phosphate (pdT), 2-deoxycytidine-5'-phosphate (pdC), 2-deoxyadenosine-5'-phosphate (pdA), and 2'-deoxyguanosine-5'-phosphate (pdG) were calculated using the B3LYP/6-31++G(d,p) level of theory. The results of the calculations reveal that, for all nucleotides except pdG, conformers with a syn orientation of the base do not correspond to a minimum on the potential energy surface. In the case of pdA and pdC, conformers with an orthogonal orientation of the nucleobase are located instead, north/syn conformers. These conformers as well as syn conformers of pdG are stabilized by intramolecular N-H...O hydrogen bonds. Analysis of the electron density distribution within the atoms in molecules theory reveals the presence of numerous C-H...O hydrogen bonds in the nucleotides. However, a more detailed consideration of the properties of these bonds demonstrates that many of them should be considered as strong attractive electrostatic interactions rather than true hydrogen bonds. True hydrogen bonds are represented mainly by C6/ C8-H...O5'/O-P in anti conformers and the N-H...O-P bonds in syn conformers. It is demonstrated that the values of ellipticity of the electron density at the bond critical point (BCP) and the distance between BCP and ring critical point are the most reliable indicators for determining the true intramolecular hydrogen bonds.  相似文献   

18.
Protonation of p-xylylaminomethylferrocene (1) and n-hexylaminomethylferrocene (2) by HCl and NH(4)PF(6) forms the ferrocenylmethyl(alkyl)ammonium salt. Inclusion of the compounds by dibenzo[24]crown-8 (DB24C8) produces [2]pseudorotaxanes, [(DB24C8)(1-H)](+)(PF(6)) and [(DB24C8)(2-H)](+)(PF(6)), respectively. X-ray diffraction of the former product indicates an interlocked structure composed of the axis and the macrocyclic molecule. Intermolecular N-H...O and C-H...O interactions and stacking of the aromatic planes are observed. [(DB24C8)(1-H)](+)(PF(6)), in the solid state, is characterized by IR spectroscopy and elemental analyses. A similar reaction of 1,1'-bis(p-xylylaminomethyl)ferrocene (3) forms a mixture of [2] and [3]pseudorotaxanes, [(DB24C8)(3-H(2))](2+)(PF(6))(2) and [(DB24C8)(2)(3-H(2))](2+)(PF(6))(2). The latter product having two DB24C8 molecules is isolated and characterized by X-ray crystallography. Formation of these pseudorotaxanes in a CD(3)CN solution is evidenced by (1)H NMR and mass spectrometry. Electrochemical oxidation of 1-3 at 0.4 V (vs Ag(+)/Ag) in the presence of TEMPOH (1-hydroxy-2,2,6,6-tetramethylpiperidine) and DB24C8 affords the corresponding pseudorotaxanes. The ESR spectrum of the reaction mixture indicates the formation of a TEMPO radical in high yield. Details of the conversion of the dialkylamino group of the ligand to the dialkylammonium group are investigated by using a flow electrolysis method linked to spectroscopic measurements. The proposed mechanism for the reaction involves the ferrocenium species, formed by initial oxidation, which undergoes electron transfer from nitrogen to the Fe(III) center, producing a cation radical at the nitrogen. Transfer of hydrogen from TEMPOH to the cation radical and inclusion of the resulting dialkylammonium species by DB24C8 yields the pseudorotaxanes.  相似文献   

19.
In the present work, we have investigated the structure of 7-azaindole···2-fluoropyridine dimer in a supersonic jet by employing resonant two photon ionization (R2PI), IR-UV, and UV-UV double resonance spectroscopic techniques combined with quantum chemistry calculations. The R2PI spectrum of the dimer is recorded by electronic excitation of the 7-azaindole moiety, and a few low frequency intermolecular vibrations of the dimer are clearly observed in the spectrum. The electronic origin band of the dimer is red-shifted by 1278 cm(-1) from the S(1) ← S(0) origin band of 7-azaindole monomer. The presence of a single conformer of the dimer is confirmed by IR-UV and UV-UV hole-burning spectroscopic techniques. RIDIR (Resonant ion dip infrared) spectrum of the dimer shows a red-shift of 265 cm(-1) in the N-H stretching frequency with respect to that of the 7-azaindole monomer. Two planar double hydrogen bonded cyclic structures of the dimer have been predicted from DFT calculations. Comparison of experimental and theoretical N-H stretching frequencies confirms that the observed dimer is stabilized by N-H···N and C-H···N hydrogen bonding interactions. The less stable conformer with N-H···F and C-H···N interactions are not observed in the experiment. The competition between N-H···N and N-H···F interactions in the two dimeric structures are discussed from natural bond orbital (NBO) analysis. The current results demonstrate that fluorine makes a hydrogen bond of intermediate strength through cooperative interaction of another hydrogen bond (C-H···N) present in the dimer, although fluorine is believed to be very weak hydrogen bond acceptor.  相似文献   

20.
A Schiff base zinc(Ⅱ) complex [Zn(C12H16BrClN2O)2(NCS)2] was prepared and characterized by elemental analysis, IR and single-crystal X-ray diffraction. The crystal belongs to the triclinic system, space group P with a = 8.414(1), b = 9.124(1), c = 22.212(3) (A), α = 79.177(2), β = 86.296(2), γ = 89.899(2)o, V = 1671.3(4) (A)3, Z = 2, Dc = 1.631 g/cm3, Mr = 820.79, λ(MoKα) = 0.71073 (A), μ = 3.444 mm-1, F(000) = 824, R = 0.0646 and wR = 0.1179. A total of 7371 unique reflections were collected, of which 3904 with I>2σ(I) were observed. The complex crystallizes with two half-molecules per asymmetric unit and each mononuclear molecule is centrosymmetric. The Zn atom lying at the inversion centre is six-coordinated in a slightly distorted octahedral geometry by two phenolate O atoms and two imine N atoms from two Schiff base ligands, as well as two N atoms from two thiocyanate anions. In the crystal structure, the combination of π-π stacking interactions and intermolecular hydrogen bonds (N-H…Br, N-H…O, N-H…N, C-H…O, C-H…S and C-H…Cl) leads to a three-dimensional network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号