首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Protein assays provide direct access to biologically and pharmacologically relevant information. To obtain a maximum of information from the very smallest amounts of complex biological samples, highly multiplexed protein assays are needed. However, at present, cross-reactions of binding reagents restrict the use of such assays to selected cases and severely limit the potential for up-scaling the technology. Here we describe a double-chip format, which can effectively overcome this specificity problem for sandwich immunoassays. This format consists of a capture array and a reference array with fluorescent labeled detection antibodies coupled to the reference array via DNA duplexes. This format allows for the local application of the labeled detection antibodies onto their corresponding specific spots on the capture array. Here we show that this double-chip format allows for the use of cross-reactive antibodies without generating false positive signals, and an assay for the parallel detection of seven different cytokines was set up. Even without further optimization, the dynamic range and the limit of detection for interleukin 8 were found to be comparable to those obtained with other types of multiplexed sandwich immunoassays.  相似文献   

2.
Qiang Ma 《Talanta》2007,72(4):1446-1452
The biocompatible semiconductor quantum dots (QDs) have unique photophysical properties, which provide important advantages over organic dyes and lanthanide probes in fluorescence labeling applications. In this work, multicolor quantum QD-encoded microspheres have been prepared via the layer-by-layer (LbL) assembly approach. Polystyrene microspheres of 3 μm diameter were used as templates for the deposition of different sized CdTe QDs/polyelectrolyte multilayers via electrostatic interactions. Two kinds of biofuntional multicolor microspheres with two different antibodies, anti-human IgG and anti-rabbit IgG were prepared. Human IgG and rabbit IgG can be detected as target antigens in the multiplexed fluoroimmunoassays. Furthermore, a novel microfluidic on-chip device was developed to detect two kinds of antigen-conjugated multicolor QD-encoded microspheres; the microspheres can be distinguished from each other based on their fluorescence signals.  相似文献   

3.
In this paper, we describe a new method of automated sample preparation for multiplexed biological analysis systems that use flow cytometry fluorescence detection. In this approach, color-encoded microspheres derivatized to capture particular biomolecules are temporarily trapped in a renewable surface separation column to enable perfusion with sample and reagents prior to delivery to the detector. This method provides for separation of the biomolecules of interest from other sample matrix components as well as from labeling solutions. After sample preparation, the beads can be released from the renewable surface column and delivered to a flow cytometer for direct on-bead analysis one bead at a time. Using mixtures of color-encoded beads derivatized for various analytes yields suspension arrays for multiplexed analysis. Development of this approach required a new technique for automated capture and release of the color-encoded microspheres within a fluidic system. We developed a method for forming a renewable filter and demonstrate its use for capturing microspheres that are too small to be easily captured in previous flow cells for renewable separation columns. The renewable filter is created by first trapping larger beads in the flow cell, and then smaller beads are captured either within or on top of the bed of larger beads. Both the selective microspheres and filter bed are automatically emplaced and discarded for each sample. A renewable filter created with 19.9 μm beads was used to trap 5.6 μm optically encoded beads with trapping efficiencies of 99%. The larger beads forming the renewable filter did not interfere with the detection of color-encoded 5.6 μm beads by the flow cytometer fluorescence detector. The use of this method was demonstrated with model reactions for a variety of bioanalytical assay types including a one-step capture of a biotinylated label on Lumavidin beads, a two-step sandwich immunoassay, and a one-step DNA binding assay. A preliminary demonstration of multiplexed detection of two analytes using color-encoded beads was also demonstrated. The renewable filter for creating separation columns containing optically encoded beads provides a general platform for coupling renewable surface methods for sample preparation and analyte labeling with flow cytometry detectors for suspension array multiplexed analyses.  相似文献   

4.
建立氯霉素,克伦特罗和雌二醇 3种兽药残留同时检测的悬浮芯片法.通过将3种兽药的BSA蛋白结合物偶联于悬浮芯片的固相载体--聚苯乙烯荧光微球上作为检测探针,采用间接竞争法,在液相反应体系中,3种小分子兽药抗原和微球上的兽药结合物共同竞争液相中各自特异性的生物素化单抗,再加入藻红蛋白标记的链霉亲和素,反应后检测获得荧光信号,绘制出3种兽药残留检测的标准曲线.同时进行3种兽药的常规酶联免疫吸附法标准曲线的测定.在检测技术、检出限、检测区间、特异性、盲样测定和多元分析等方面对两种方法进行比较.除了特异性外的其它指标的比较中,悬浮芯片法均具有明显优势.两种方法的特异性检测具有良好的一致性.高通量悬浮芯片技术,具有操作简单、灵敏快速和成本低廉等优点,为多种兽药残留的快速检测提供了新方法.  相似文献   

5.
In this paper, we describe a duplexed imaging optical fiber array-based immunoassay for immunoglobulin A (IgA) and lactoferrin. To fabricate the individually addressable array, microspheres were functionalized with highly specific monoclonal antibodies. The microspheres were loaded in microwells etched into the distal face of an imaging optical fiber bundle. Two microsphere-based sandwich immunoassays were developed to simultaneously detect IgA and lactoferrin, two innate immune system proteins found in human saliva. Individual microspheres could be interrogated for the simultaneous measurement of both proteins. The working concentration range for IgA detection was between 700 pM and 100 nM, while the working concentration range for lactoferrin was between 385 pM and 10 nM. The cross-reactivity between detection antibodies and their non-specific targets was relatively low in comparison to the signal generated by the specific binding with their targets. These results suggest that the degree of multiplexing on this fiber-optic array platform can be increased beyond a duplex.  相似文献   

6.
Hwang H  Kim SH  Yang SM 《Lab on a chip》2011,11(1):87-92
In this paper, we demonstrated a microfluidic system for fabricating microspheres with hierarchical surface nanopatterns for molecular detection based on surface-enhanced Raman scattering (SERS). Briefly, a photocurable silica suspension was emulsified into monodisperse droplets using a microfluidic device composed of two coaxial glass capillaries. The silica particles in each droplet protruded through the interface and spontaneously formed a hexagonal array. After polymerization of the droplets, we selectively decorated the exposed areas of the silica particles with silver nanoparticles through electroless deposition. The resulting hierarchically-structured microspheres showed high sensitivity and fast binding kinetics in molecular detection based on SERS, owing to the dense array of hot spots on each microsphere and high mobility of the microspheres, respectively. Notably, the SERS signals from molecules adsorbed on the microspheres could be detected in both the dried and suspension states. In addition, we demonstrated that the SERS-active microspheres can be functionalized into structural colored or magnetoresponsive microspheres for advanced applications.  相似文献   

7.
Schistosomiasis is caused by blood-dwelling parasitic trematodes of the genus Schistosoma and is classified by the WHO as the second most socioeconomically devastating parasitic disease, second only to malaria. Schistosoma expresses a complex array of glycans as part of glycoproteins and glycolipids that can be targeted by both the adaptive and the innate part of the immune system. Some of these glycans can be used for diagnostic purposes. A subgroup of schistosome glycans is decorated with unique α-(1-2)-fucosides and it has been shown that these often multi-fucosylated fragments are prime targets for antibodies generated during infection. Since these α-(1-2)-fucosides cannot be obtained in sufficient purity from biological sources, we set out to develop an effective route of synthesis towards α-(1-2)-oligofucosides of varying length. Here we describe the exploration of two different approaches, starting from either end of the fucose chains. The oligosaccharides have been attached to gold nanoparticles and used in an enzyme-linked immunosorbent assay ELISA and a microarray format to probe antibody binding. We show that binding to the oligofucosides of antibodies in sera of infected people depends on the length of the oligofucose chains, with the largest glycans showing most binding.  相似文献   

8.
We show that multiple enzyme tags may be used in an immunoassay format or for the detection of sequence-specific DNA on microarrays. The assays may be multiplexed and monitored under separate solution and voltage differences. Thus, the detection method relies on an electrochemical detection format, whereby multiple enzymes can be sensed. In our case we utilize horseradish peroxidase, laccase, and glucose dehydrogenase as enzymes attached to specific antibodies or to streptavidin.  相似文献   

9.
A new anodic‐stripping voltammetric immunoassay protocol for detection of IgG1, as a model protein, was designed by using CdS quantum dot (QD) layer‐by‐layer assembled hollow microspheres (QDHMS) as molecular tags. Initially, monoclonal anti‐human IgG1 specific antibodies were anchored on amorphous magnetic beads preferably selective to capture Fab of IgG1 analyte from the sample. For detection, monoclonal anti‐human IgG1 (Fc‐specific) antibodies were covalently coupled to the synthesized QDHMS. In a sandwich‐type immunoassay format, subsequent anodic‐stripping voltammetric detection of cadmium released under acidic conditions from the coupled QDs was conducted at an in situ prepared mercury film electrode. The immunoassay combines highly efficient magnetic separation with signal amplification by the multilayered QD labels. The dynamic concentration range spanned from 1.0 fg mL?1 to 1.0 μg mL?1 of IgG1 with a detection limit of 0.1 fg mL?1. The electrochemical immunoassay showed good reproducibility, selectivity, and stability. The analysis of clinical serum specimens revealed good accordance with the results obtained by an enzyme‐linked immunosorbent assay method. The new immunoassay is promising for enzyme‐free, and cost‐effective analysis of low‐abundance biomarkers.  相似文献   

10.
Wang L  Wei W  Han J  Fu Z 《The Analyst》2012,137(3):735-740
Multianalyte immunoassay in a single run is often necessary to monitor or quantitate several components in a complex sample matrix for various purposes. In this paper we present a novel, individually addressable electrode array for sequential electrochemiluminescent (ECL) immunoassay using a non-array detector. An immunosensor array was fabricated by site-selectively immobilizing multiple antigens on different electrodes. With a competitive immunoassay format, the amounts of the bound Ru(bpy)(3)(2+) derivative labeled antibodies decreased with the increase of the antigens in the sample, and the ECL signals from different immunosensors were collected in turn by a photomultiplier with the aid of a home-made single-pore-three-throw switch. Using human IgG and rat IgG as model analytes, this multianalyte immunoassay showed detection limits down to 8.9 and 7.2 ng mL(-1) for them, respectively. The results for real sample analysis demonstrated that this strategy can provide a simple, sensitive, low-cost and high-throughput ECL immunosensor array for clinical diagnosis.  相似文献   

11.
On-line sample preconcentration by a dynamic pH junction in conjunction with multiplexed capillary electrophoresis (CE) and UV detection represents a sensitive and high-throughput format for future metabolomic research, such as purine analysis. The optimization of purine focusing can be rapidly assessed by systematically altering the sample matrix properties, such as the buffer co-ion, pH and ionic strength using a 96-capillary array format. This method permits focusing of large sample injection volumes, resulting in over a 50-fold improvement in the concentration sensitivity. The limit of detection (S/N = 3) for purine metabolites was less than 8.0 x 10(-8) M under optimum conditions when using UV absorbance. Dynamic pH junction multiplexed CE demonstrated excellent linearity over a hundred-fold concentration range, as well as low inter-capillary precision in terms of normalized migration times and peak areas. The potential for clinically relevant high-throughput analyses of micromolar amounts of purine metabolites in urine was also demonstrated.  相似文献   

12.
Quantum dot (QD)-encoded microspheres play an important role in suspension arrays by acting as supports for various reactions between biomolecules. With regard to QD-encoded microspheres utilized in suspension arrays, three key requirements are controllable size, abundant surface functional groups, and especially excellent fluorescence properties. In this paper, narrowly dispersed poly(styrene-co-divinylbenzene-co-methylacrylic acid) (PSDM) microspheres with specific size, surface carboxyl groups, and porous structures were synthesized by seeded copolymerization. In order to improve the incorporation efficiency of QDs within microspheres, we developed a swelling-evaporation approach in which the swelling process was combined with gradual evaporation of the solvent and thus gradual concentration of QDs in the dispersion solution. This approach was demonstrated to be an efficient method for improving the fluorescence intensity of resultant microspheres compared with the use of swelling alone. Moreover, the porous structure was shown to aid the penetration of QDs into the interiors of the microspheres. Through this approach, microspheres encoded with either single or multiple wavelength-emitting QDs were fabricated effectively. The suspension immunoassays were then founded based on the QD-encoded microspheres, by coating mouse antihuman chorionic gonadotropin as the probe for goat antimouse IgG detection. The positive results determined by Luminex 100 and the low cytotoxicity of the QD-encoded microspheres demonstrated their great potential in suspension arrays.  相似文献   

13.
Kim J  Jensen EC  Megens M  Boser B  Mathies RA 《Lab on a chip》2011,11(18):3106-3112
A microfluidic device for solid-phase immunoassays based on microparticle labeling is developed using microvalve-control structures for automated sample processing. Programmable microvalve control in a multilayer structure provides automated sample delivery, adjustable hydrodynamic washing and compatibility with a wide range of substrates. Capture antibodies are derivatized on glass surfaces within the processor using an APTES patterning method, and magnetic microspheres conjugated with a secondary detection antibody are used as labels in a capture-sandwich format. In this microfluidic processor, washing force can be precisely controlled to remove the nonspecifically bound microparticles. Automated microfluidic immunoassays are demonstrated for mouse immunoglobulin (IgG) and human prostate specific antigen (PSA) with limits of detection of 1.8 and 3 pM, respectively. The sample processor architecture is easily parallelized for high-throughput analysis and easily interfaced with various assay substrates.  相似文献   

14.
Protein biomarker discovery and validation are crucial for diagnosis, prognosis, and theranostics of human pathologies; "omics" approaches bring new insights in this field. In particular, the combination of immuno-sensors in array format with mass spectrometry efficiently extends the classical immunoassay format and includes molecular characterization. Here, we coupled surface plasmon resonance imaging (SPRi) with MALDI-TOF mass spectrometry in a hyphenated technique which enables multiplexed quantification of binding by SPRi and molecular characterization of interacting partners by subsequent MS analysis. This adds specificity, because MS enables differentiation of molecules that are difficult to distinguish by use of antibodies, for example truncation variants or protein isoforms. Proof of concept was established for detection, identification, and characterization of a potential breast cancer marker, the LAG3 protein, at ~1?μg?mL(-1), added to human plasma. The analytical performance of this new method, dubbed "SUPRA-MS", was established, particularly its specificity (S/N > 10) and reliability (100?% LAG3 identification with high significant mascot score >87.9). The adjusted format for rapid, collective, and automated on-chip MALDI-MS analysis is robust at the femtomole level and has numerous potential applications in proteomics.  相似文献   

15.
16.
To achieve a rapid assay for ABO blood grouping using a latex reagent, two latex reagents were produced, one of which combined with mouse monoclonal immunoglobulin M (IgM) isolated from commercial ABO blood grouping reagent, and the other of which combined with its F(ab')2 fragment prepared by cold pepsin digestion. The latex reagent adsorbing the F(ab')2 fragment was able to detect the 1000-fold diluted saliva and provided much better sensitivity than that of IgM. This suggests that the difference in sensitivity between the two latex reagents is responsible for adsorption orientation of the antigen site on the latex particles. The new assay successfully completed the ABO blood grouping of cigarette ends within 30 min.  相似文献   

17.
Suspension array technology for simultaneous detection of three kinds of veterinary drugs, chloramphenicol (CAP), clenbuterol and 17-beta-estradiol has been developed. Conjugates of chloramphenicol and clenbuterol coupled with bovine serum albumin were synthesized and purified. Probes of suspension array were constituted by coupling the three conjugates on the fluorescent microspheres/beads and the microstructures of the beads’ surface were observed by scanning electron microscopy which was a direct confirmation for the successful conjugates’ coupling. The optimal addition of conjugates and the amounts of antibodies were optimized and selected, respectively. Standard curves were plotted and the coefficient of determination-R2 was greater than 0.989 which suggested good logistic correlation. The detection ranges for the three veterinary drugs are 40-6.25 × 105 ng L−1, 50-7.81 × 105 ng L−1 and 1 × 103-7.29 × 105 ng L−1, respectively and the lowest detection limits (LDLs) of them are 40, 50 and 1000 ng L−1, respectively. The suspension array is specific and has no significant cross-reactivity with other chemicals. Meanwhile, unknown samples were detected by suspension array and ELISA in comparison with each other. The errors between found and real for the detection of the unknown samples were relatively small to both of the two methods, whereas, the detection ranges of suspension array are broader and sensitive than that of the traditional ELISA. The high-throughput suspension array is proved to be a novel method for multi-analysis of veterinary drugs with simple operation, high sensitivity and low cost.  相似文献   

18.
With the emergence of multidrug resistant Salmonella strains, the development of anti-Salmonella vaccines is an important task. Currently there are no approved vaccines against Salmonella Paratyphi A, the leading cause of paratyphoid fever. To fill this gap, oligosaccharides corresponding to the O-polysaccharide repeating units from the surface of Salmonella Paratyphi A have been synthesized through convergent stereoselective glycosylations. The synthetic glycan antigen was conjugated with a powerful immunogenic carrier system, the bacteriophage Qβ. The resulting construct was able to elicit strong and long-lasting anti-glycan IgG antibody responses, which were highly selective toward Salmonella Paratyphi A associated glycans. The availability of well-defined glycan antigen enabled the determination that one repeating unit of the polysaccharide is sufficient to induce protective antibodies, and the paratose residue and/or the O-acetyl modifications on the backbone are important for recognition by antibodies elicited by a Qβ-tetrasaccharide conjugate. Immune sera provided excellent protection to mice from lethal challenge with Salmonella Paratyphi A, highlighting the potential of the synthetic glycan-based vaccine.  相似文献   

19.
A multiplexed electrochemical immunoassay method was developed for simultaneous ultrasensitive measurement of tumor markers based on electrochemical stripping analysis of silver nanoparticles (Ag NPs). The Ag NPs were deposited on a disposable immunosensor array with a reduction reaction catalyzed by nanogold labels. The immunosensor array was prepared by covalently immobilizing capture antibodies on chitosan modified screen-printed carbon electrodes. Through a sandwich-type immunoreaction, antibody-functionalized Au NPs were captured onto immunosensor surface to induce the silver deposition from a silver enhancer solution. The deposited Ag NPs could be directly measured by anodic stripping analysis in KCl solution. The catalytic deposition enhanced the analytical sensitivity for detection of protein markers. The interference of dissolved oxygen could be avoided as the detection was performed with positive stripping potential range. Using carcinoembryonic antigen and α-fetoprotein as model analytes, the proposed multiplexed immunoassay method showed wide linear ranges of three orders of magnitude with the detection limits down to 3.5 and 3.9 pg mL−1, respectively. The localized silver deposition, as well as the stripping detection process, eliminated completely the electrochemical cross talk between adjacent immunosensors. The immunosensor array exhibited acceptable reproducibility, stability and accuracy, showing a promising potential in multianalyte determination for clinical application.  相似文献   

20.
A multi-analyte detection system using a unique antibody (Ab) biochip is described. The Ab-based biochip, also referred to as the protein biochip, uses a sensor array based on a complementary metal oxide silicon (CMOS) integrated circuit. The Ab-biochip has a sampling platform of four-by-four microarrays of antibodies deposited onto a Nylon membrane substrate. The micro-arrayed antibodies can be interrogated simultaneously or sequentially using the biochip sensing array detector with the use of a diffractive optical element illuminating each antibody spot individually. The usefulness of the Ab biochip is illustrated by the measurements of immunoglobulin G (IgG) used as the model analyte system. The detection limit for Cy5-labeled IgG molecules was 13 pg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号