首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The transparent nanocrystalline thin films of undoped zinc oxide and Mn-doped (Zn1−xMnxO) have been deposited on glass substrates via the sol–gel technique using zinc acetate dehydrate and manganese chloride as precursor. The as-deposited films with the different manganese compositions in the range of 2.5–20 at% were pre-heated at 100 °C for 1 h and 200 °C for 2 h, respectively, and then crystallized in air at 560 °C for 2 h. The structural properties and morphologies of the undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/Vis spectroscopy. The analyzed results indicates that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn related phases. Room temperature photoluminescence is observed for the ZnO and Mn-doped ZnO thin films.  相似文献   

2.
Zinc oxide thin films have been obtained in O2 ambient at a pressure of 1.3 Pa by pulsed laser deposition (PLD) using ZnO powder target and ceramic target. The effect of temperature on structural and optical properties of ZnO thin films was investigated systematically by XRD, SEM, FTIR and PL spectra. The results show that the best structural and optical properties can be achieved for ZnO thin film fabricated at 700 °C using powder target and at 400 °C using ceramic target, respectively. The PL spectrum reveals that the efficiency of UV emission of ZnO thin film fabricated by using powder target is low, and the defect emission of ZnO thin film derived from Zni and Oi is high.  相似文献   

3.
Effect of annealing temperature on characteristics of sol–gel driven ZnO thin film spin-coated on Si substrate was studied. The UV–visible transmittance of the sol decreased with the increase of the aging time and drastically reduced after 20 days aging time. Granular shape of ZnO crystallites was observed on the surface of the films annealed at 550, 650, and 750 °C, and the crystallite size increased with the increase of the annealing temperature. Consequently nodular shape of crystallites was formed upon increasing the annealing temperature to 850 °C and above. The current–voltage characteristics of the Schottky diodes fabricated with ZnO thin films with various annealing temperatures were measured and analyzed. It is found that, ZnO films showed the Schottky characteristics up to 750 °C annealing temperature. The Schottky diode characteristics were diminished upon increasing the annealing temperature above 850 °C. XPS analysis suggested that the absence of oxygen atoms in its oxidized state in stoichiometric surrounding, might be responsible for the diminished forward current of the Schottky diode when annealed above 850 °C.  相似文献   

4.
This paper discusses several structural, electrical and oxidation characteristics of co-sputtered Ta–Ru alloy films on oxidized Si-substrates. From X-ray examination, the Ta1Ru1 phase has formed and dominates in the compositions exceeding 54 at.% Ru content. The resistivity of the Ta–Ru thin films can reach a maximum of ∼320 μΩ cm in the composition range between 35 and 54 at.% Ru. After thermal treatment in air (600°C, 1 h), Ru-rich samples show a less increase in resistivity than Ta-rich ones. The observed preferential oxidation of Ta in the Ta–Ru samples can be further interpreted by thermodynamic calculations. The Ta-rich surface oxide is believed to be responsible for the passivating ability of the Ru atom toward oxidation at high temperatures. This results in the Ru of the metallic state though the oxidation of Ta occurs.  相似文献   

5.
The pyrolytic decomposition of layered basic zinc acetate (LBZA) nanobelts (NBs) into nanocrystalline ZnO NBs is investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). We also report on the gas sensing response of the resulting ZnO nanomaterial to CO. The LBZA NBs are grown at 65 °C in an aqueous solution of zinc acetate dihydrate. AFM and SEM results show as-grown products possess the characteristic layered structure of the LBZA crystals. XRD and XPS results show that annealing as-grown products at 210 °C in air causes a transformation from zinc acetate to nanocrystalline ZnO NBs via thermal decomposition. The ZnO crystalline domain size increases with temperature from 9.2 nm at 200 °C to 94 nm at 1000 °C, as measured from XRD. SEM shows evidence of sintering at 600 °C. The thickness of the NBs, determined via AFM, ranges from 10 to 50 nm and remains approximately constant with annealing temperature. XPS confirmed the chemical transformation from zinc acetate to ZnO and showed a significant remaining zinc hydroxide component for the ZnO NBs consistent with published results. PL measurements at room temperature show a blue shift in peak emission as the nanobelts change from LBZA to ZnO at 200 °C. Above this transition temperature, the ZnO nanobelts possess strong band edge emission at 390 nm and little broad band emission in the visible region. The AFM and SEM images reveal that the crystallites within the nanobelts orientate in rows along the long axis during annealing. This structure provides a high surface area to volume ratio of aligned nanoparticles which is beneficial for gas sensing applications. Gas sensors fabricated from 400 °C annealed nanobelts showed a response of 1.62 when exposed to 200 ppm of CO in dry air at 400 °C, as defined by the ratio of resistance before and during exposure. This indicates that ZnO nanostructures obtained by thermal decomposition of LBZA NBs could provide a cost effective route to high sensitivity gas sensors.  相似文献   

6.
Growth characteristic and optical properties of the amorphous ZnO thin films prepared on soda-lime–silica glass substrates by chemical solution process at 100 and 200 °C were investigated by using X-ray diffraction analysis, scanning probe microscope, ultraviolet spectrophotometer, and photoluminescence. The films exhibited an amorphous pattern even when finally heat treated at 100–200 °C for 60 min. The photoluminescence spectrum of amorphous ZnO films shows a strong near-band-edge emission, while the visible emission is nearly quenched.  相似文献   

7.
Cadmium stannate thin films were prepared by spray pyrolysis technique using cadmium acetate and tin(II) chloride precursors at substrate temperatures 450 °C and 500 °C. XRD pattern confirms the formation of orthorhombic (1 1 1) cadmium stannate phase for the film prepared at substrate temperature of 500 °C, whereas, films prepared at 450 °C are amorphous. Film formation does not occur at substrate temperature from 300 to 375 °C. SEM images reveal that the surface of the prepared Cd2SnO4 film is smooth. The average optical transmittance of ∼86% is obtained for the film prepared at substrate temperature of 500 °C with the film thickness of 400 nm. The optical band gap value of the films varies from 2.7 to 2.94 eV. The film prepared at 500 °C shows a minimum resistivity of 35.6 × 10−4 Ω cm.  相似文献   

8.
《Applied Surface Science》2005,239(3-4):432-436
Boron nitride (BN) nanometer thin films are synthesized on Si (1 0 0) substrates by RF reactive magnetron sputtering. Then the film surfaces are treated in the case of the base pressure below 5 × 10−4 Pa and the temperature of 800 and 1000 °C, respectively. And the films are studied by Fourier transform infrared spectra (FTIR), atomic force microscopic (AFM) and field emission characteristics at different annealing temperature. The results show that the surface heat treatment makes no apparent influence on the surface morphology of the BN films. The transformations of the sample emission characteristics have to do with the surface negative electron affinity (NEA) of the films possibly. The threshold electric fields are lower for BN samples without heat-treating than the treated films, which possibly ascribed to the surface negative electron affinity effect. A threshold field of 8 V/μm and the emission current of 80 μA are obtained. The surface NEA is still presence at the heat treatment temperature of 800 °C and disappeared at temperature of 1000 °C.  相似文献   

9.
D. Kato  T. Matsui  J. Yuhara 《Surface science》2010,604(15-16):1283-1286
The oxidation of submonolayer zinc films on Rh(100) surface by O2 gas has been studied using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and scanning tunneling microscopy (STM). With a zinc coverage of 0.8 ML, an atomically flat ultra-thin zinc oxide film formed at an oxygen partial pressure of 2 × 10? 8 mbar and a temperature of 150 °C. The zinc oxide film showed a c(16 × 2) LEED pattern. The high resolution STM image of the zinc oxide film showed single dotted spots and double dotted spots arranged linearly and periodically along the [01¯1] direction. We propose an atomic arrangement model of the film accounting for the LEED pattern, the STM image, and the atomic arrangement of the bulk ZnO(0001) surface.  相似文献   

10.
《Physics letters. A》2020,384(4):126097
In order to develop high efficiency solar cell device by replacing conventional hazardous CdS window layer by environmental friendly Zn-based buffer layer, ZnSe thin films of thickness 100 nm were grown on glass and ITO substrates employing electron beam evaporation technique followed by air and vacuum annealing at temperature 100 °C, 200 °C and 300 °C. As-grown and annealed films were subjected to characterization tools like XRD, UV-Vis spectrophotometer, SEM, EDS and source meter. Structural results reveal the amorphous phase, SEM images indicate uniform deposition without pin holes and EDS patterns confirm the deposition. Transmittance is observed to be high in visible region and band gap is found to change with temperature of the treatment and I-V measurements demonstrate ohmic nature. On the basis of optimized results, the films annealed at 200 °C in vacuum may be used as buffer layer to develop high efficiency Cd-based and CIGS thin film solar cells.  相似文献   

11.
《Applied Surface Science》2002,185(3-4):243-247
By using RF plasma-enhanced chemical vapor deposition, amorphous carbon films were grown in pure methane plasma. Field emission of the films were examined as a function of substrate temperature. It was found that the emission current from the samples prepared at substrate temperatures higher than 600 °C were considerably improved. According to the results by Raman spectroscopy, growth of graphite crystallites were promoted with high substrate temperatures. Moreover, the surface morphology was abruptly changed at high substrate temperatures over 600 °C. We discuss the field emission characteristics of the amorphous carbon films with regard to the structural features and the surface morphology.  相似文献   

12.
Iron films have been grown on (1 1 0) GaAs substrates by atmospheric pressure metalorganic chemical vapor deposition at substrate temperatures (Ts) between 135°C and 400°C. X-ray diffraction (XRD) analysis showed that the Fe films grown at Ts between 200°C and 330°C were single crystals. Amorphous films were observed at Ts below 200°C and it was not possible to deposit films at Ts above 330°C. The full-width at half-maximum of the rocking curves showed that crystalline qualities were improved at Ts above 270°C. Single crystalline Fe films grown at different substrate temperature showed different structural behaviors in XRD measurements. Iron films grown at Ts between 200°C and 300°C showed bulk α-Fe like behavior regardless of film thickness (100–6400 Å). Meanwhile, Fe films grown at 330°C (144 and 300 Å) showed a biaxially compressed strain between substrate and epilayer, resulting in an expanded inter-planar spacing along the growth direction. Magnetization measurements showed that Fe films (>200 Å) grown at 280°C and 330°C were ferromagnetic with the in-plane easy axis along the [1 1 0] direction. For the thinner Fe films (⩽200 Å) regardless of growth temperature, square loops along the [1 0 0] easy axis were very weak and broad.  相似文献   

13.
Nd-doped Si-rich silicon oxide thin films were produced by radio frequency magnetron co-sputtering of three confocal cathodes: Si, SiO2, and Nd2O3, in pure argon plasma at 500 °C. The microstructure and optical properties of the films were investigated versus silicon excess and post-deposition annealing treatment by means of ellipsometry and Fourier transform infrared spectrometry as well as by the photoluminescence method. A notable emission from Nd3+ ions was obtained for the as-deposited sample, while the films annealed at 900 °C showed the highest peak intensity. The maximum emission was observed for the films with 4.7 at% of Si excess.  相似文献   

14.
PbS thin films composed of highly (200)-oriented shuttle-like nano-/micro-rods were successfully fabricated on glass substrates by the environment friendly ionothermal method at 140 °C in deep eutectic solvent (DES). The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), ultraviolet-visible (UV–vis) and photoluminescence (PL) spectra, respectively. The possible mechanism of the oriented growth of PbS nano-/micro-rods was discussed. The PbS thin films composed of shuttle-like nano-/micro-rods exhibited a large absorbance property in the wavelength range of 350–1100 nm, and moreover, the PL spectrum had a broad emission band centered at 490 nm. The shuttle-like PbS nano-/micro-rods-based thin films might have potential application in solar cells.  相似文献   

15.
ZnO nanorod arrays were grown on quartz slices in the aqueous solution of zinc acetate and hexamethylenetetramine at 90 °C. Then ZnO:Mg shells were epitaxially grown on the nanorods to form core/shell structures in the aqueous solution of zinc acetate, magnesium acetate and hexamethylenetetramine at the same temperature. Effects of the shells and UV laser beam irradiation on the crystal structure and photoluminescence properties of ZnO nanorods were studied. ZnO:Mg shells suppress the green emission and enhance the UV emission intensity of the nanorods by 38 times. Enhancement of the UV emission depends on the Mg content in the shells. Short time UV laser beam irradiation could improve ZnO nanorod emission efficiently. The UV emission intensity of ZnO nanorods is enhanced by 71 times by capping and subsequent UV laser beam irradiation.  相似文献   

16.
《Current Applied Physics》2010,10(6):1372-1377
Thin bismuth oxide films have been prepared by a modified Pechini route on glass substrate and annealed at temperatures ranging between 400 °C and 700 °C using bismuth nitrate as raw material. The thin films were then characterized for structural, surface morphological, optical and electrical properties by means of X-ray diffraction (XRD), Atomic force microscopy (AFM), scanning electron microscopy (SEM), optical absorption and d.c. two-probe, respectively. Structural investigations indicated that as-prepared bismuth oxide films were polycrystalline and multiphase, and annealing temperatures played a key role in the composition and optical properties of these films. AFM and SEM images revealed well defined particles which are highly influenced by annealing temperatures. The optical studies showed a direct band gap which varied with annealing temperatures between 3.63 eV and 3.74 eV. The electrical measurement showed that the electrical resistivity increased with annealing temperatures and the films were typical semiconductors. As catalyst, bismuth oxide films annealed at 550 °C had the best photocatalytic performance for photodegradation of methyl orange.  相似文献   

17.
The oxidation of Ni–YSZ cermet as well the reduction of re-oxidized Ni–YSZ cermet was investigated by using temperature-programmed oxidation (TPO), temperature-programmed reduction (TPR) and scanning electron microscope (SEM). The scanning electron microscope (SEM) photographs and temperature-programmed reduction (TPR) profiles indicated that the sintering of smaller nickel oxide crystallites to larger aggregates occurred concurrently with the formation of smaller nickel oxide crystallites from the oxidation of nickel at 800 °C, and the sintering of smaller nickel oxide crystallites at 600 °C was slower than that at 800 °C. The SEM results showed that each Ni particle was separated into a lot of smaller NiO particles during oxidation. The TPO profiles showed that two kinds of nickel particles exist in the anode reduced at 800 and 600 °C, one with high activity towards oxidation for the nickel crystallites directly from reduction, and another one with low activity towards oxidation for the sintered nickel particles. The Ni–YSZ anodes reduced at higher temperature showed higher re-oxidation temperature than the one reduced at lower temperature because of the accelerated passivating and sintering of the smaller nickel particles at higher temperature. The re-oxidation profiles were almost unchanged during redox cycling at 600 °C, whereas the re-oxidation peak temperature decreased during redox cycling at 800 °C, indicating that the primary nickel grains split to smaller ones upon cyclic reduction at higher temperature.  相似文献   

18.
Indium tin oxide (ITO) films as the low emissivity coatings of Ni-based alloy at high temperature were studies. ITO films were deposited on the polished surface of alloy K424 by direct current magnetron sputtering. These ITO-coated samples were heat-treated in air at 600–900 °C for 150 h to explore the effect of high temperature environment on the emissivity. The samples were analyzed by X-ray diffraction (XRD), SEM and EDS. The results show that the surface of sample is integrity after heat processing at 700 °C and below it. A small amount of fine crack is observed on the surface of sample heated at 800 °C and Ti oxide appears. There are lots of fine cracks on the sample annealed at 900 °C and a large number of various oxides are detected. The average infrared emissivities at 3–5 μm and 8–14 μm wavebands were tested by an infrared emissivity measurement instrument. The results show the emissivity of the sample after annealed at 600 and 700 °C is still kept at a low value as the sample before annealed. The ITO film can be used as a low emissivity coating of super alloy K424 up to 700 °C.  相似文献   

19.
By deposition of metallic vanadium on FTO substrate in Argon atmosphere at room temperature, the sample was then annealed in furnace for 2 h at the temperature of 410 °C in air ambient. (1 1 0) -orientated vanadium dioxide films were prepared on the FTO surface. A maximum transmittance of ∼40% happened at 900–1250 nm region at room temperature. The change of optical transmittance at this region was ∼25% between semiconducting and metallic states. In particular, vanadium dioxide thin films on FTO exhibit semiconductor–metal phase transition at ∼51 °C, the width of the hysteresis loop is ∼8 °C.  相似文献   

20.
《Solid State Communications》2002,121(9-10):531-536
High quality zinc oxide nanoparticles with (002) preferred orientation were prepared by post-thermal annealing zinc implanted silica at 700 °C using two methods. One method was annealing zinc implanted silica at 700 °C for 2 h in oxygen ambient; the other method was sequentially annealing zinc implanted silica at 700 °C in nitrogen and oxygen ambient for 1 h, respectively. X-ray diffraction (XRD), absorption and microphotoluminescence (micro-PL) results indicated that the latter method could create high quality ZnO nanoparticles with (002) preferred orientation and narrow size-distribution. X-ray photoelectron spectra (XPS) showed the formation of ZnO nanoparticles on a silica surface, where the ZnO nanoparticle content increased with increasing oxidation time in an oxygen environment. The processes of the transformation from Zn to ZnO are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号