首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In the title compounds, C7H6ClN2O+·NO3 and C7H6ClN2O+·ClO4, the ions are connected by N—H...O hydrogen bonds and halogen interactions. Additionally, in the first compound, co‐operative π–π stacking and halogen...π interactions are observed. The energies of the observed interactions range from a value typical for very weak interactions (1.80 kJ mol−1) to one typical for mildly strong interactions (53.01 kJ mol−1). The iminium cations exist in an equilibrium form intermediate between exo‐ and endocyclic. This study provides structural insights relevant to the biochemical activity of 2‐amino‐5‐chloro‐1,3‐benzoxazole compounds.  相似文献   

2.
In the title compound [systematic name: 3‐(azaniumylcarbamoyl)pyridinium dichloride], C6H9N3O2+·2Cl, the ions are connected by N—H...Cl hydrogen bonds to form layers and C—H...Cl interactions expand the layers into a three‐dimensional net. The energies of the N—H...Cl interactions range from typical for very weak interactions (0.17 kcal mol−1) to those observed for relatively strong interactions (29.1 kcal mol−1). C—H...Cl interactions can be classified as weak and mildly strong (energies ranging from 2.2 to 8.2 kcal mol−1). Despite the short contacts existing between the parallel aromatic rings of the cations, π–π interactions do not occur.  相似文献   

3.
In methyl 4‐(4‐chloroanilino)‐3‐nitrobenzoate, C14H11ClN2O4, (I), there is an intramolecular N—H...O hydrogen bond and the intramolecular distances provide evidence for electronic polarization of the o‐quinonoid type. The molecules are linked into sheets built from N—H...O, C—H...O and C—H...π(arene) hydrogen bonds, together with an aromatic π–π stacking interaction. The molecules of methyl 1‐benzyl‐2‐(4‐chlorophenyl)‐1H‐benzimidazole‐5‐carboxylate, C22H17ClN2O2, (II), are also linked into sheets, this time by a combination of C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions.  相似文献   

4.
In the title compound, [CdCl2(C18H12N6)]·3H2O, the Cd atom has a distorted square‐pyramidal coordination geometry. The solvent water molecules are hydrogen bonded to each other to form planar cyclic water hexamers, which, together with other hydrogen bonds, interlink the Cd complex molecules to give one‐dimensional supramolecular ribbons that extend along the [111] direction. The chains are assembled into two‐dimensional layers parallel to (111) by π–π stacking interactions. Furthermore, interlayer π–π stacking interactions and weak C—H...Cl hydrogen bonds complete the formation of a three‐dimensional framework.  相似文献   

5.
The structures of two salts of flunarizine, namely 1‐bis[(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine, C26H26F2N2, are reported. In flunarizinium nicotinate {systematic name: 4‐bis[(4‐fluorophenyl)methyl]‐1‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazin‐1‐ium pyridine‐3‐carboxylate}, C26H27F2N2+·C6H4NO2, (I), the two ionic components are linked by a short charge‐assisted N—H...O hydrogen bond. The ion pairs are linked into a three‐dimensional framework structure by three independent C—H...O hydrogen bonds, augmented by C—H...π(arene) hydrogen bonds and an aromatic π–π stacking interaction. In flunarizinediium bis(4‐toluenesulfonate) dihydrate {systematic name: 1‐[bis(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine‐1,4‐diium bis(4‐methylbenzenesulfonate) dihydrate}, C26H28F2N22+·2C7H7O3S·2H2O, (II), one of the anions is disordered over two sites with occupancies of 0.832 (6) and 0.168 (6). The five independent components are linked into ribbons by two independent N—H...O hydrogen bonds and four independent O—H...O hydrogen bonds, and these ribbons are linked to form a three‐dimensional framework by two independent C—H...O hydrogen bonds, but C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions are absent from the structure of (II). Comparisons are made with some related structures.  相似文献   

6.
The title compounds, C10H11ClO3, (I), and C10H11BrO3, (II), are isomorphous and effectively isostructural; all of the interatomic distances and angles are normal. The structures exhibit long intermolecular C—H...O and C—H...π contacts with attractive energies ranging from 1.17 to 2.30 kJ mol−1. Weak C—H...O hydrogen bonds form C(3) and C(4) motifs, combining to form a two‐dimensional R34(12) net. No face‐to‐face stacking interactions are observed.  相似文献   

7.
Isomeric 5‐bromo‐3‐nitrosalicylaldehyde phenylhydrazone and 3‐bromo‐5‐nitrosalicylaldehyde phenylhydrazone, C13H10BrN3O3, both crystallize with two molecules in the asymmetric unit. In both isomers, an intramolecular O—H...N hydrogen bond links the hydroxy group and the imine N atom. In the 5‐bromo‐3‐nitro isomer, there are two independent N—H...O hydrogen‐bonded chains, each molecule in the asymmetric unit forming its own chain. These chains are then linked to form a three‐dimensional framework by a combination of weak C—H...O, C—H...Br, C—H...π and π–π stacking interactions. In the 3‐bromo‐5‐nitro isomer, N—H...O hydrogen bonds link the independent molecules alternately into a zigzag chain, which is reinforced by a weak C—H...O interaction. Individual chains are linked by a C—H...Br interaction and a three‐dimensional framework is generated by π–π stacking interactions.  相似文献   

8.
In the nearly planar title compound, C15H10IN3, the three pyridine rings exhibit transoid conformations about the interannular C—C bonds. Very weak C—H...N and C—H...I interactions link the molecules into ribbons. Significant π–π stacking between molecules from different ribbons completes a three‐dimensional framework of intermolecular interactions. Four different packing motifs are observed among the known structures of simple 4′‐substituted terpyridines.  相似文献   

9.
The asymmetric unit of the title compound, C10H10N22+·2C2HO4, consists of one half of a 4,4′‐bipyridinium cation, which has inversion symmetry, and a hydrogen oxalate anion, in which an intramolecular hydrogen bond exists. The cations and anions are connected by O—H...O, N—H...O and C—H...O hydrogen bonds, forming a two‐dimensional network, whereas π–π stacking interactions involving the 4,4′‐bipyridinium cations lead to the formation of a three‐dimensional supramolecular structure. An unusual deca‐atomic ring is formed between two hydrogen oxalate anions, which are linked side‐to‐side via O—H...O hydrogen‐bonding interactions.  相似文献   

10.
The synthesis and structural characterization of 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazole [C16H12N2O2, (I)], 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium chloride monohydrate [C16H13N2O2+·Cl·H2O, (II)] and the hydrobromide salt 5,6‐dimethyl‐2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium bromide [C18H17N2O2+·Br, (III)] are described. Benzimidazole (I) displays two sets of aromatic interactions, each of which involves pairs of molecules in a head‐to‐tail arrangement. The first, denoted set (Ia), exhibits both intermolecular C—H...π interactions between the 2‐(furan‐2‐yl) (abbreviated as Fn) and 1‐(furan‐2‐ylmethyl) (abbreviated as MeFn) substituents, and π–π interactions involving the Fn substituents between inversion‐center‐related molecules. The second, denoted set (Ib), involves π–π interactions involving both the benzene ring (Bz) and the imidazole ring (Im) of benzimidazole. Hydrated salt (II) exhibits N—H...OH2...Cl hydrogen bonding that results in chains of molecules parallel to the a axis. There is also a head‐to‐head aromatic stacking of the protonated benzimidazole cations in which the Bz and Im rings of one molecule interact with the Im and Fn rings of adjacent molecules in the chain. Salt (III) displays N—H...Br hydrogen bonding and π–π interactions involving inversion‐center‐related benzimidazole rings in a head‐to‐tail arrangement. In all of the π–π interactions observed, the interacting moieties are shifted with respect to each other along the major molecular axis. Basis set superposition energy‐corrected (counterpoise method) interaction energies were calculated for each interaction [DFT, M06‐2X/6‐31+G(d)] employing atomic coordinates obtained in the crystallographic analyses for heavy atoms and optimized H‐atom coordinates. The calculated interaction energies are −43.0, −39.8, −48.5, and −55.0 kJ mol−1 for (Ia), (Ib), (II), and (III), respectively. For (Ia), the analysis was used to partition the interaction energies into the C—H...π and π–π components, which are 9.4 and 24.1 kJ mol−1, respectively. Energy‐minimized structures were used to determine the optimal interplanar spacing, the slip distance along the major molecular axis, and the slip distance along the minor molecular axis for 2‐(furan‐2‐yl)‐1H‐benzimidazole.  相似文献   

11.
In the title compound, C7H7N2S+·C4H5O5, the ions are connected by N—H...O hydrogen bonds. The hydrogen oxydiacetate residues are linked together by O—H...O hydrogen bonds disordered about centres of inversion into hydrogen‐bonded ribbon layers crosslinked by weak C—H...O and stacking interactions. The cation exists mainly in the 2,3‐dihydro‐1,3‐benzothiazol‐2‐iminium form, with a small participation of the 2‐aminobenzothiazolium form, based on the structural data and quantum mechanical calculations. This study provides structural insights relevant to the biochemical activity of benzothiazole molecules.  相似文献   

12.
The title compound, [Co(H2O)6](C16H11O7S)2·4H2O, with cobalt(II) at the centre of symmetry, exhibits alternating hydrophilic and hydrophobic regions. Hydrophilic regions are generated by O—H...O hydrogen bonds among sulfonate groups, involving solvent water molecules and coordinated water molecules; π–π stacking interactions assemble the flavone skeletons into columns which form the hydrophobic regions. A three‐dimensional network is built up from an extensive array of hydrogen bonds, π–π stacking interactions and electrostatic interactions between the cation and anion. As a salt of the sulfonated derivative of naturally occurring tectochrysin (5‐hydroxy‐7‐methoxyflavone), this compound offers enhanced solubility and potential biological activity over the natural product.  相似文献   

13.
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6‐hydroxy‐5,7,8‐trimethylchroman‐2‐one substituted at the 5‐position by a Br atom in (I) and by a nitro group in (II). The pyranone rings in both molecules adopt half‐chair conformations, and intramolecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hydroxy groups. Classical intermolecular O—H...O hydrogen bonds are found in both molecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close intermolecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking interactions between the benzene rings to build an extensive three‐dimensional network with molecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O interactions generate a three‐dimensional network of dimer stacks.  相似文献   

14.
Both title compounds are derivatives of salicylic acid. 5‐Formylsalicylic acid (systematic name: 5‐formyl‐2‐hydroxybenzoic acid), C8H6O4, possesses three good hydrogen‐bond donors and/or acceptors coplanar with their attached benzene ring and abides very well by Etter's hydrogen‐bond rules. Intermolecular O—H...O and some weak C—H...O hydrogen bonds link the molecules into a planar sheet. Reaction of this acid and o‐phenylenediamine in refluxing ethanol produced in high yield the new zwitterionic compound 5‐(benzimidazolium‐2‐yl)salicylate [systematic name: 5‐(1H‐benzimidazol‐3‐ium‐2‐yl)‐2‐hydroxybenzoate], C14H10N2O3. Each imidazolium N—H group and its adjacent salicyl C—H group chelate one carboxylate O atom via hydrogen bonds, forming seven‐membered rings. As a result of steric hindrance, the planes of the molecules within these pairs of hydrogen‐bonded molecules are inclined to one another by ∼74°. There are also π–π stacking interactions between the parallel planes of the imidazole ring and the benzene ring of the salicyl component of the adjacent molecule on one side and the benzimidazolium component of the molecule on the other side.  相似文献   

15.
In the title compound, C5H6Br2N2O2, all atoms except for the methyl group lie on a mirror plane in the space group Pnma (No. 62). All bond lengths are normal and the five‐membered ring is planar by symmetry. Two short intermolecular N—Br...O=C contacts [Br...O = 2.787 (2) and 2.8431 (19) Å] are present, originating primarily from the O‐atom lone pairs donating electron density to the antibonding orbitals of the N—Br bonds (delocalization energy transfers 3.27 and 2.11 kcal mol−1). The total stabilization energies of the Br...O interactions are 3.4828 and 2.3504 kcal mol−1.  相似文献   

16.
The 2‐aminobenzothiazole sulfonation intermediate 2,3‐dihydro‐1,3‐benzothiazol‐2‐iminium monohydrogen sulfate, C7H7N2S+·HSO4, (I), and the final product 2‐iminio‐2,3‐dihydro‐1,3‐benzothiazole‐6‐sulfonate, C7H6N2O3S2, (II), both have the endocyclic N atom protonated; compound (I) exists as an ion pair and (II) forms a zwitterion. Intermolecular N—H...O and O—H...O hydrogen bonds are seen in both structures, with bonding energy (calculated on the basis of density functional theory) ranging from 1.06 to 14.15 kcal mol−1. Hydrogen bonding in (I) and (II) creates DDDD and C(8)C(9)C(9) first‐level graph sets, respectively. Face‐to‐face stacking interactions are observed in both (I) and (II), but they are extremely weak.  相似文献   

17.
The structure of 4‐methoxy‐1‐naphthol, C11H10O2, (I), contains an intermolecular O—H...O hydrogen bond which links the molecules into a simple C(2) chain running parallel to the shortest crystallographic b axis. This chain is reinforced by intermolecular π–π stacking interactions. Comparisons are drawn between the crystal structure of (I) and those of several of its simple analogues, including 1‐naphthol and some monosubstituted derivatives, and that of its isomer 7‐methoxy‐2‐naphthol. This comparison shows a close similarity in the packing of the molecules of its simple analogues that form π‐stacks along the shortest crystallographic axes. A substantial spatial overlap is observed between adjacent molecules in such stacks. In this group of monosubstituted naphthols, the overlap depends mainly on the position of the substituents carried by the naphthalene moiety, and the extent of the overlap depends on the substituent type. By contrast with (I), in the crystal structure of the isomeric 7‐methoxy‐2‐naphthol there are no O—H...O hydrogen bonds or π–π stacking interactions, and sheets are formed by O—H...π and C—H...π interactions.  相似文献   

18.
The title two‐dimensional hydrogen‐bonded coordination compounds, [Cu(C8H5O4)2(C4H6N2)2], (I), and [Cu(C8H7O2)2(C4H6N2)2]·H2O, (II), have been synthesized and structurally characterized. The molecule of complex (I) lies across an inversion centre, and the Cu2+ ion is coordinated by two N atoms from two 4‐methyl‐1H‐imidazole (4‐MeIM) molecules and two O atoms from two 3‐carboxybenzoate (HBDC) anions in a square‐planar geometry. Adjacent molecules are linked through intermolecular N—H...O and O—H...O hydrogen bonds into a two‐dimensional sheet with (4,4) topology. In the asymmetric part of the unit cell of (II) there are two symmetry‐independent molecules, in which each Cu2+ ion is also coordinated by two N atoms from two 4‐MeIM molecules and two O atoms from two 3‐methylbenzoate (3‐MeBC) anions in a square‐planar coordination. Two neutral complex molecules are held together via N—H...O(carboxylate) hydrogen bonds to generate a dimeric pair, which is further linked via discrete water molecules into a two‐dimensional network with the Schläfli symbol (43)2(46,66,83). In both compounds, as well as the strong intermolecular hydrogen bonds, π–π interactions also stabilize the crystal stacking.  相似文献   

19.
The title compound, C24H17F10N3O2, exhibits intramolecular N—H...O hydrogen bonding, as well as intramolecular Ar...ArF face‐to‐face interactions. The molecules are linked together by N—H...F—C hydrogen bonds, forming chains parallel to the a axis. Adjacent symmetry‐related chains are combined in double zipper‐like ribbons by parallel ArF...ArF offset π‐stacking interactions.  相似文献   

20.
The crystal structures of 8‐phenoxycarbonyl‐1,8‐diazabicyclo[5.4.0]undec‐7‐enium chloride, C16H21N2O2+·Cl, (I), and 8‐methoxycarbonyl‐1,8‐diazabicyclo[5.4.0]undec‐7‐enium chloride monohydrate, C11H19N2O2+·Cl·H2O, (II), recently reported by Carafa, Mesto & Quaranta [Eur. J. Org. Chem. (2011), pp. 2458–2465], are analysed and discussed with a focus on crystal interaction assembly. Both compounds crystallize in the space group P21/c. The crystal packings are characterized by dimers linked through π–π stacking interactions and intermolecular nonclassical hydrogen bonds, respectively. Additional intermolecular C—H...Cl interactions [in (I) and (II)] and classical O—H...Cl hydrogen bonds [in (II)] are also evident and contribute to generating three‐dimensional hydrogen‐bonded networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号