首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lanthanum(III) complexes tris(3,5‐diphenylpyrazolato‐κ2N,N′)tris(tetrahydrofuran‐κO)lanthanum(III) tetrahydrofuran monosolvate, [La(C15H11N2)3(C4H8O)3]·C4H8O, (I), and tris(3,5‐diphenyl‐1,2,4‐triazolato‐κ2N1,N2)tris(tetrahydrofuran‐κO)lanthanum(III), [La(C14H10N3)3(C4H8O)3], (II), both contain LaIII atoms coordinated by three heterocyclic ligands and three tetrahydrofuran ligands, but their coordination geometries differ. Complex (I) has a mer‐distorted octahedral geometry, while complex (II) has a fac‐distorted configuration. The difference in the coordination geometries and the existence of asymmetric La—N bonding in the two complexes is associated with intramolecular C—H...N/O interactions between the ligands.  相似文献   

2.
Three potassium edta (edta is ethylenediaminetetraacetic acid, H4Y) salts which have different degrees of ionization of the edta anion, namely dipotassium 2‐({2‐[bis(carboxylatomethyl)azaniumyl]ethyl}(carboxylatomethyl)azaniumyl)acetate dihydrate, 2K+·C10H14N2O82−·2H2O, (I), tripotassium 2,2′‐({2‐[bis(carboxylatomethyl)amino]ethyl}ammonio)diacetate dihydrate, 3K+·C10H13N2O83−·2H2O, (II), and tetrapotassium 2,2′,2′′,2′′′‐(ethane‐1,2‐diyldinitrilo)tetraacetate 3.92‐hydrate, 4K+·C10H12N2O84−·3.92H2O, (III), were obtained in crystalline form from water solutions after mixing edta with potassium hydroxide in different molar ratios. In (II), a new mode of coordination of the edta anion to the metal is observed. The HY3− anion contains one deprotonated N atom coordinated to K+ and the second N atom is involved in intramolecular bifurcated N—H...O and N—H...N hydrogen bonds. The overall conformation of the HY3− anions is very similar to that of the Y4− anions in (III), although a slightly different spatial arrangement of the –CH2COO groups in relation to (III) is observed, whereas the H2Y2− anions in (I) adopt a distinctly different geometry. The preferred synclinal conformation of the –NCH2CH2N– moiety was found for all edta anions. In all three crystals, the anions and water molecules are arranged in three‐dimensional networks linked via O—H...O and C—H...O [and N—H...O in (I) and (II)] hydrogen bonds. K...O interactions also contribute to the three‐dimensional polymeric architecture of the salts.  相似文献   

3.
The title compounds with terminal N‐heterocyclic carbenes, namely octacarbonyl(imidazolidinylidene‐κC2)di‐μ3‐sulfido‐triiron(II)(2 FeFe), [Fe3(C3H6N2)(μ3‐S)2(CO)8], (I), and octacarbonyl(1‐methylimidazo[1,5‐a]pyridin‐3‐ylidene‐κC3)di‐μ3‐sulfido‐triiron(II)(2 FeFe), [Fe3(C8H8N2)(μ3‐S)2(CO)8], (II), have been synthesized. Each compound contains two Fe—Fe bonds and two S atoms above and below a triiron triangle. One of the eight carbonyl ligands deviates significantly from linearity. In (I), dimers generated by an N—H...S hydrogen bond are linked into [001] double chains by a second N—H...S hydrogen bond. These chains are packed by a C—H...O hydrogen bond to yield [101] sheets. In (II), dimers generated by an N—H...S hydrogen bond are linked by C—H...O hydrogen bonds to form [111] double chains.  相似文献   

4.
Synthesis and Crystal Structure of the Heterobimetallic Diorganotindichloride (FcN, N)2SnCl2 (FcN, N: (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2}) The heterobimetallic title compound [(FcN, N)2SnCl2] ( 1 ) was obtained by the reaction of [LiFcN, N] with SnCl4 in the molar ratio 1:1 in diethylether as a solvent. The two FcN, N ligands in 1 are bound to Sn through a C‐Sn σ‐bond; the amino N atoms of the side‐chain in FcN, N remain uncoordinated. The crystals contain monomeric molecules with a pseudo‐tetrahedral coordination at the Sn atom: Space group P21/c; Z = 4, lattice dimensions at —90 °C: a = 9.6425(2), b = 21.7974(6), c = 18.4365(4) Å, β = 100.809(2)°, R1obs· = 0.051, wR2obs· = 0.136.  相似文献   

5.
The title compound, [(Z)‐4‐allyl‐2‐(2‐hydroxybenzylidene)thiosemicarbazide‐κS][(E)‐4‐allyl‐1‐(2‐oxidobenzylidene)thiosemicarbazidato‐κ3O,N1,S]copper(II) monohydrate, [Cu(C11H11N3OS)(C11H13N3OS)]·H2O, crystallized as a rotational twin in the monoclinic crystal system (space group Cc) with two formula unit (Z′ = 2) in the asymmetric unit, one of which contains an allyl substituent disordered over two positions. The CuII atom exhibits a distorted square‐planar geometry involving two differently coordinated thiosemicarbazone ligands. One ligand is bonded to the CuII atom in a tridentate manner via the phenolate O, azomethine N and thioamide S atoms, while the other coordinates in a monodentate manner via the S atom only. The complex is stabilized by an intramolecular hydrogen bond, which creates a six‐membered pseudo‐chelate metalla‐ring. The structure analysis indicates the presence of the E isomer for the tridentate ligand and the Z isomer for the monodentate ligand. The crystal structure contains a three‐dimensional network built from intermolecular O—H...O, N—H...O, O—H...N and N—H...S hydrogen bonds.  相似文献   

6.
The title complex, trans‐bis(dimethylformamide‐κO)bis{N,N′‐N′′,N′′′‐tetra‐tert‐butyl[oxybis(phosphonic diamide‐κO)]}manganese(II) dichloride dihydrate, [Mn(C16H40N4O3P2)2(C3H7NO)2]Cl2·2H2O, is the first example of a bis‐chelate amido–pyrophosphate (pyrophosphoramide) complex containing an O[P(O)(NH)2]2 fragment. Its asymmetric unit contains half of the complex dication, one chloride anion and one water molecule. The MnII atom, located on an inversion centre, is octahedrally coordinated, with a slight elongation towards the monodentate dimethylformamide ligand. Structural features of the title complex, such as the P=O bond lengths and the planarity of the chelate ring, are compared with those of previously reported complexes with six‐membered chelates involving the fragments C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2. This analysis shows that the six‐membered chelate rings are less puckered in pyrophosphoramide complexes containing a P(O)OP(O) skeleton, such as the title compound. The extended structure of the title complex involves a linear aggregate mediated by N—H...O and N—H...Cl hydrogen bonds, in which the chloride anion is an acceptor in two additional O—H...Cl hydrogen bonds.  相似文献   

7.
Two tricarbonyl complexes of rhenium(I) and manganese(I) coordinated by the ligand 2‐{[2‐(1H‐imidazol‐4‐yl)ethyl]iminomethyl}‐5‐methylphenolate are reported, viz. fac‐tricarbonyl(2‐{[2‐(1H‐imidazol‐4‐yl‐κN3)ethyl]iminomethyl‐κN}‐5‐methylphenolato‐κO)rhenium(I) methanol monosolvate, [Re(C16H14N3O4)(CO)3]·CH3OH, (I), and fac‐tricarbonyl(2‐{[2‐(1H‐imidazol‐4‐yl‐κN3)ethyl]iminomethyl‐κN}‐5‐methylphenolato‐κO)manganese(I), fac‐[Mn(C16H14N3O4)(CO)3], (II), display facial coordination in a distorted octahedral environment. The crystal structure of (I) is stabilized by O—H...O, N—H...O and C—H...O hydrogen‐bond interactions, while that of (II) is stabilized by N—H...O hydrogen‐bond interactions only. These interactions result in two‐dimensional networks and π–π stacking for both structures.  相似文献   

8.
The cocrystal salt tetraaquabis[trans‐1,2‐bis(pyridin‐4‐yl)ethene‐κN]iron(II) bis(1,1,3,3‐tetracyano‐2‐ethoxypropenide)–trans‐1,2‐bis(pyridin‐4‐yl)ethene (1/2), [Fe(C12H10N2)2(H2O)4](C9H5N4O)2·2C12H10N2, is a rare example of a mononuclear FeII compound with trans‐1,2‐bis(pyridin‐4‐yl)ethane (bpe) ligands. The complex cation resides on a crystallographically imposed inversion center and exhibits a tetragonally distorted octahedral coordination geometry. Both the symmetry‐independent bpe ligand and the cocrystallized bpe molecule are essentially planar. The 1,1,3,3‐tetracyano‐2‐ethoxypropenide counter‐ion is nonplanar and the bond lengths are consistant with significant electron delocalization. The extended structure exhibits an extensive O—H…N hydrogen‐bonding network with layers of complex cations joined by the cocrystallized bpe. Both the coordinated and the cocrystallized bpe are involved in π–π interactions. Hirshfeld and fingerprint plots reveal the important intermolecular interactions. Density functional theory was used to estimate the strengths of the hydrogen‐bonding and π–π interactions, and suggest that the O—H…N hydrogen bonds enhance the strength of the π‐interactions by increasing the polarization of the pyridine rings.  相似文献   

9.
An amine‐elimination reaction was used to obtain the title compound, i.e. (Ntert‐butyl‐N‐{[(1,2,3,3a,7a‐η)‐4,5,6,7‐tetra­hydro‐4,7‐methano‐1H‐inden‐2‐yl]­di­methyl­silyl}amido‐κN)bis(N‐methyl­methanaminato‐κN)­zirconium(IV) or [isodiCpSiMe2N‐tert‐butyl]Zr(NMe2)2 (Cp is cyclo­penta­dienyl), [Zr(C16H25NSi)(C2H6N)2], in very good yield. Treatment of isodiCpHSiMe2NH‐tert‐butyl with Zr(NMe2)4 leads to the formation of a yellow solid that can be purified by sublimation. The single‐crystal structure of the product shows the exo complexation of the isodi­cyclo­penta­dienyl ligand to the Zr atom. The Cp portion of this ligand is bonded to the Zr atom in a η5 manner, with a Zr—Cg (Cg is the ring centroid) distance of 2.2352 (10) Å. The isodiCpSiMe2N‐tert‐butyl ligand has a constrained geometry, which is exhibited by the small angle of 95.55 (10)° for N—Si—CCp.  相似文献   

10.
The title complex, [μ‐2,2′‐(1,4‐butane­diyl)di‐1H‐benzimidazole‐κ2N3:N3′]bis{[2,2′‐(1,4‐butane­diyl)di‐1H‐benzimidazole‐κ2N3,N3′](nitrato‐κO)cobalt(II)} dinitrate ethanol disolvate, [Co2(NO3)2(C18H18N4)3](NO3)2·2C2H6O, was obtained from self‐assembly of cobalt(II) nitrate with 2,2′‐(1,4‐butane­diyl)dibenzimidazole (L). The complex molecule lies about an inversion centre and the flexible L ligands act in both bridging and chelating modes to form a dinuclear complex with unanticipated nine‐membered chelate rings. The unique uncoordinated nitrate anion is linked to the cation by pairs of N—H⋯O hydrogen bonds, which determine the overall cation conformation. Cation–anion sets are then linked by a further N—H⋯O hydrogen bond to generate a chain along [010]. Chains are linked by C—H⋯O hydrogen bonds to form sheets in the (100) plane.  相似文献   

11.
The reaction of 1‐NHPhCHPh‐2‐NMe2C6H4 ( 1 ) and 1‐NHPhCHPhCH2‐2‐NMe2C6H4 ( 2 ) with n‐BuLi in diethyl ether gave the solvent‐free chelated dimethylamino lithium amides [1‐LiNPhCHPh‐2‐NMe2C6H4]2 ( 3 ) and [1‐LiNPhCHPhCH2‐2‐NMe2C6H4]2 ( 4 ). The lithium amides 3 and 4 were characterized by 1H, 7Li, and 13C NMR spectroscopy. A crystal structure determination was carried out on 4 , which is the first example of a structurally characterized solvent‐free dimeric chelated dimethylamino lithium arylamide with three‐coordinate lithium centers that contains a seven‐membered chelate ring. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The three transition‐metal complexes, (meso‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N)bis(perchlorato‐κO)copper(II), [Cu(ClO4)2(C18H40N4)], (I), (meso‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N)bis(nitrato‐κO)zinc(II), [Zn(NO3)2(C18H40N4)], (II), and aquachlorido(meso‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N)copper(II) chloride, [CuCl(C18H40N4)(H2O)]Cl, (III), are described. The molecules display a very similarly distorted 4+2 octahedral environment for the cation [located at an inversion centre in (I) and (II)], defined by the macrocycle N4 group in the equatorial sites and two further ligands in trans‐axial positions [two O–ClO3 ligands in (I), two O–NO2 ligands in (II) and one chloride and one aqua ligand in (III)]. The most significant difference in molecular shape resides in these axial ligands, the effect of which on the intra‐ and intermolecular hydrogen bonding is discussed. In the case of (I), all strong hydrogen‐bond donors are saturated in intramolecular interactions, while weak intermolecular C—H...O contacts result in a three‐dimensional network. In (II) and (III), instead, there are N—H and O—H donors left over for intermolecular interactions, giving rise to the formation of strongly linked but weakly interacting chains.  相似文献   

13.
The scandium(III) cations in the structures of pentaaqua(biuret‐κ2O,O′)scandium(III) trichloride monohydrate, [Sc(C2H5N3O2)(H2O)5]Cl3·H2O, (I), and tetrakis(biuret‐κ2O,O′)scandium(III) trinitrate, [Sc(C2H5N3O2)4](NO3)3, (II), are found to adopt very different coordinations with the same biuret ligand. The roles of hydrogen bonding and the counter‐ion in the establishment of the structures are described. In (I), the Sc3+ cation adopts a fairly regular pentagonal bipyramidal coordination geometry arising from one O,O′‐bidentate biuret molecule and five water molecules. A dense network of N—H...Cl, O—H...O and O—H...Cl hydrogen bonds help to establish the packing, resulting in dimeric associations of two cations and two water molecules. In (II), the Sc3+ cation (site symmetry 2) adopts a slightly squashed square‐antiprismatic geometry arising from four O,O′‐bidentate biuret molecules. A network of N—H...O hydrogen bonds help to establish the packing, which features [010] chains of cations. One of the nitrate ions is disordered about an inversion centre. Both structures form three‐dimensional hydrogen‐bond networks.  相似文献   

14.
The title compounds, trans‐bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)bis(ethanol‐κO)cadmium(II), [Cd(C8H5N2O2)2(C2H6O)2], (I), and trans‐bis(1H‐benzimidazole‐κN3)bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)nickel(II), [Ni(C8H5N2O2)2(C7H6N2)2], (II), are hydrogen‐bonded supramolecular complexes. In (I), the CdII ion is six‐coordinated by two O atoms from two ethanol molecules, and by two O and two N atoms from two bidentate benzimidazole‐2‐carboxylate (HBIC) ligands, giving a distorted octahedral geometry. The combination of O—H...O and N—H...O hydrogen bonds results in two‐dimensional layers parallel to the ab plane. In (II), the six‐coordinated NiII atom, which lies on an inversion centre, shows a similar distorted octahedral geometry to the CdII ion in (I); two benzimidazole molecules occupy the axial sites and the equatorial plane contains two chelating HBIC ligands. Pairs of N—H...O hydrogen bonds between pairs of HBIC anions connect adjacent NiII coordination units to form a one‐dimensional chain parallel to the a axis. Moreover, these one‐dimensional chains are further linked via N—H...O hydrogen bonds between HBIC anions and benzimidazole molecules to generate a three‐dimensional supramolecular framework. The two compounds show quite different supramolecular networks, which may be explained by the fact that different co‐ligands occupy the axial sites in the coordination units.  相似文献   

15.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

16.
The crystal structure of the title complex, trans‐dichloridotetrakis[1‐phenyl‐3‐(1H‐1,2,4‐triazol‐1‐yl‐κN4)propan‐1‐one]copper(II) hexahydrate, [CuCl2(C11H11N3O)4]·6H2O, is isomorphous with that of the corresponding nickel and cobalt compounds. The complex has crystallographic inversion symmetry with the CuII atom on an inversion centre. Each CuII atom is six‐coordinated by one N atom from each of the four 1‐phenyl‐3‐(1H‐1,2,4‐triazol‐1‐yl)propan‐1‐one ligands in the equatorial plane and by two chloride ligands in axial positions. The structure includes a centrosymmetric irregular up–up–down–down (uudd) water tetramer cluster and O—H...Cl hydrogen bonds. Intermolecular C—H...Cl hydrogen bonds exist between adjacent molecules, resulting in a three‐dimensional supramolecular network.  相似文献   

17.
The complexes [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)cobalt(II), [Co(C12H27O3SSi)2(C5H9N3)], and [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)zinc(II), [Zn(C12H27O3SSi)2(C5H9N3)], are isomorphous. The central ZnII/CoII ions are surrounded by two S atoms from the tri‐tert‐butoxysilanethiolate ligand and by two N atoms from the chelating histamine ligand in a distorted tetrahedral geometry, with two intramolecular N—H...O hydrogen‐bonding interactions between the histamine NH2 groups and tert‐butoxy O atoms. Molecules of the complexes are joined into dimers via two intermolecular bifurcated N—H...(S,O) hydrogen bonds. The ZnII atom in [(1H‐imidazol‐4‐yl‐κN3)methanol]bis(tri‐tert‐butoxysilanethiolato‐κ2O,S)zinc(II), [Zn(C12H27O3SSi)2(C4H6N2O)], is five‐coordinated by two O and two S atoms from the O,S‐chelating silanethiolate ligand and by one N atom from (1H‐imidazol‐4‐yl)methanol; the hydroxy group forms an intramolecular hydrogen bond with sulfur. Molecules of this complex pack as zigzag chains linked by N—H...O hydrogen bonds. These structures provide reference details for cysteine‐ and histidine‐ligated metal centers in proteins.  相似文献   

18.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

19.
In the title complex, mer‐diaqua[2,6‐dioxo‐1,2,3,6‐tetrahydropyrimidine‐4‐carboxylato(2−)]bis(1H‐imidazole‐κN3)cobalt(II), [Co(C5H2N2O4)(C3H4N2)2(H2O)2], the CoII ion is coordinated by a deprotonated N atom and the carboxylate O atom of the orotate ligand, two imidazole N atoms and two aqua ligands in a distorted octahedral geometry. The title complex exists as discrete doubly hydrogen‐bonded dimers, and a three‐dimensional network of O—H...O and N—H...O hydrogen bonds and weak π–π interactions is responsible for crystal stabilization.  相似文献   

20.
From the reaction of 1‐HOCPh2‐2‐NMe2C6H4 ( 1 ), 1‐HOC(C6H11)2‐2‐NMe2C6H4 ( 2 ) and 1‐HOCPh2CH2‐2‐NMe2C6H4 ( 3 ) with n‐BuLi in diethyl ether, the solvent‐free chelated dimethylamino lithium alkoxides [1‐LiOCPh2‐2‐NMe2C6H4]2 ( 4 ), [1‐LiOC(C6H11)2‐2‐NMe2C6H4]2 ( 5 ) and [1‐LiOCPh2CH2‐2‐NMe2C6H4]2 ( 6 ) were obtained. The lithium alkoxides 4 – 6 were characterized by 1H, 7Li, and 13C NMR spectroscopy. Crystal structure determinations of 5 and 6 were carried out. Compounds 5 and 6 are examples of structurally characterized solvent‐free chelated dimethylamino lithium alkoxides and 6 is a rare example of this type containing a seven‐membered ring. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号