首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical oxidation of catechols (1a-c) has been studied in the presence of methyl acetoacetate (2a) and ethyl acetoacetate (2b) as nucleophiles in aqueous solution using cyclic voltammetry and controlled-potential coulometry. The results indicate that the quinones derived from catechols (1a-c) participate in Michael addition reactions with 2a and 2b to form the corresponding benzofuran derivatives (3a-f). The electrochemical synthesis of 3a-f has been successfully performed in an undivided cell in good yield and purity. The oxidation mechanism was deduced from voltammetric data and by coulometry at controlled potential. The products have been characterized after purification by IR, 1H NMR, 13C NMR, MS, and single crystal X-ray diffraction.  相似文献   

2.
Tin(IV) complexes 1(a and b) and 2(a and b) of valine derived peptide derivatives were synthesized and characterized on the basis of elemental analysis, IR, 1H, 13C, 119Sn NMR, ESI-MS spectra and molar conductance measurements. The C-Sn-C angle was estimated from I3C and 1H NMR data 1J(119Sn, I3C) = 623 Hz; solution 2J(119Sn, 1H) = 93.04 Hz to be 149.9°. In vitro binding studies of complexes 1 and 2 under physiological conditions at room temperature with CT-DNA were carried out employing UV-visible, fluorescence, circular dichroism and viscometric studies. The binding affinity of the complexes was quantified by calculating the Kb values and it follows the order 2a > 1a > 2b > 1b. To further examine the specific mode of binding, the interaction of complexes 2(a and b) were carried out with 5′GMP and 5′TMP by using absorption and NMR (1H, 31P) spectroscopy. The supercoiled pBR322 plasmid DNA cleavage activity of the complexes was ascertained by gel electrophoresis assay. The complexes cleave supercoiled pBR322 plasmid DNA efficiently into its nicked form at micromolar concentrations.  相似文献   

3.
The addition of silyl diazomethane (1a-d) to fullerene C60 at room temperature provided the mono-adducts, the bis- and tris-adducts of silyl fulleroid (3a-d) in moderate yields. The structures of the silyl fulleroids were characterized by mass spectroscopy, as well as 1H and 13C NMR. The gated 1H NMR and 13C-1H COLOC analyses of 3a-d showed a correlation between the methine proton resonances and three fullerene carbons. These observations, as well as the 1H NMR chemical shifts of the methine protons, suggest a remarkable diastereoselectivity, with the silyl groups located above a five-membered ring. Two transition states of the thermal nitrogen-extrusion of pyrazoline intermediate (2a) were theoretically obtained, the structures of which disclosed that the diastereoselectivity is a consequence of minimization of the repulsive interaction between the silyl groups and the N2 moiety. The bridgehead CC double bond of the silyl fulleroid is thought to be reactive by POAV analyses. The silyl fulleroids (3a,b) were found to react with singlet oxygen to afford the silyl enol ether (9a,b) via 1,3-silyl migration of a diketone (8a,b). This is the first example of 1O2 oxygenation of fulleroids.  相似文献   

4.
Three new penta- and hexacoordinated tin compounds (1-3) were prepared from PhSnCl3, Ph2SnCl2 and Ph3SnOH and 3-methyl-2-hydroxy-2-cyclopenten-1-one (L). Compounds 1-3 were characterized by IR, mass spectra, elemental analysis, 1H, 13C, and 119Sn NMR. The ligand acts as a bidentate giving the tin esters and coordinating the tin by the carbonyl group. Compound 1 (PhSnCl2L · EtOH) has an hexacoordinated tin atom, with an octahedral distorted geometry, which is a stereogenic center. Compounds 2 (Ph2SnClL) and 3 (Ph3SnL) have pentacoordinated tin atoms. The structures were determined by X-ray diffraction analyses. In the solid state 1 presents a racemic pair, linked by strong hydrogen bonds and 2 and 3 “Berry exchange coordinate” geometry.  相似文献   

5.
The reaction of N-(5-methyl-2-thienylmethylidene)-2-thiolethylamine (1) with Fe2(CO)9 in refluxing acetonitrile yielded di-(μ3-thia)nonacarbonyltriiron (2), μ-[N-(5-methyl-2-thienylmethyl)-η11(N);η11(S)-2-thiolatoethylamido]hexacarbonyldiiron (3), and N-(5-methyl-2-thienylmethylidene)amine (4). If the reaction was carried out at 45 °C, di-μ-[N-(5-methyl-2-thienylmethylidene)-η1(N);η1(S)-2-thiolethylamino]-μ-carbonyl-tetracarbonyldiiron (5) and trace amount of 4 were obtained. Stirring 5 in refluxing acetonitrile led to the thermal decomposition of 5, and ligand 1 was recovered quantitatively. However, in the presence of excess amount of Fe2(CO)9 in refluxing acetonitrile, complex 5 was converted into 2-4. On the other hand, the reaction of N-(6-methyl-2-pyridylmethylidene)-2-thiolethylamine (6) with Fe2(CO)9 in refluxing acetonitrile produced 2, μ-[N-(6-methyl-2-pyridylmethyl)-η1 (Npy);η11(N); η11(S)-2-thiolatoethylamido]pentacarbonyldiiron (7), and μ-[N-(6-methyl-2-pyridylmethylidene)-η2(C,N);η11(S)-2- thiolethylamino]hexacarbonyldiiron (8). Reactions of both complex 7 and 8 with NOBF4 gave μ-[(6-methyl-2-pyridylmethyl)-η1(Npy);η11(N);η11(S)-2-thiolatoethylamido](acetonitrile)tricarbonylnitrosyldiiron (9). These reaction products were well characterized spectrally. The molecular structures of complexes 3, 7-9 have been determined by means of X-ray diffraction. Intramolecular 1,5-hydrogen shift from the thiol to the methine carbon was observed in complexes 3, 7, and 9.  相似文献   

6.
1-Boraadamantane (1) and 2-ethyl-1-boraadamantane (1(2-Et)) react with bis(trialkylstannyl)ethynes (3), R3Sn-CC-SnR3 with R=Me (a), Et (b), in a 1:1 molar ratio by 1,1-organoboration under very mild conditions to give the 4-methylene-3-borahomoadamantane derivatives 4a,b and 7a,b, respectively, which are dynamic at room temperature with respect to deorganoboration. The compounds 4a,b react further with 3a,b by 1,1-organoboration to the tricyclic butadiene derivatives 5a,b. Attempts to crystallise 4a afforded the product of hydrolysis, the diboroxane 6a which was characterised by X-ray structural analysis. All products were characterised in solution by 1H-, 11B-, 13C- and 119Sn-NMR spectroscopy.  相似文献   

7.
Cyclocondensation of 1-aryl-3-ferrocenyl-2-propen-1-ones (1) with hetaryl hydrazines resulted in N-hetaryl-3-aryl-5-ferrocenyl pyrazolines (3, 4). The analogous 3-aryl-1-ferrocenyl-2-propen-1-ones (5) gave the isomeric N-hetaryl-5-aryl-3-ferrocenyl-pyrazolines (6, 10), but in lower yield. The reaction of aryl-chalcones (7) with 4-hydrazino-phthalazinone led to 3,5-bis-aryl-N-hetaryl-pyrazolines (8) or to the corresponding ene-hydrazones (9). The structure of the new compounds was established by IR, 1H and 13C NMR spectroscopy, including DNOE, HMQC, HMBC and DEPT methods. For compounds 1b, 3b and 8b the stereo structure was elucidated also by X-ray diffraction.  相似文献   

8.
A convergent synthesis of two possible diastereomers of reticulatain-1 (1a and 1b) was accomplished. Comparison of the specific optical rotations of 1a and 1b did not allow for the strict determination of the absolute configuration. However, bis-(R)-MTPA esters of 1a and 1b showed a clear difference in chemical shifts in the 1H NMR spectra. If the bis-(R)-MTPA ester of natural reticulatain-1 (1) is available, the absolute configuration of 1 will be determined. Inhibitory action of these compounds was examined with bovine heart mitochondrial complex I. Both compounds showed almost the same activity.  相似文献   

9.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

10.
Shin-ichi Naya 《Tetrahedron》2005,61(31):7384-7391
The synthesis and properties of 4,9-methanoundecafulvene [5-(4,9-methanocycloundeca-2′,4′,6′,8′,10′-pentaenylidene)pyrimidine-2,4,6(1,3,5H)-trione] derivatives 8a,b were studied. Their structural characteristics were investigated on the basis of the 1H and 13C NMR and UV-vis spectra. The rotational barrier (ΔG) around the exocyclic double bond of 8a was found to be 12.55 kcal mol−1 by the variable temperature 1H NMR measurement. The electrochemical properties of 8a,b were also studied by CV measurement. Furthermore, the transformation of 8a,b to 3-substituted 7,12-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1H,3H)-diones 16a,b was accomplished by oxidative cyclization using DDQ and subsequent ring-opening and ring-closure. The structural details and chemical properties of 16a,b were clarified. Reaction of 16a with deuteride afforded C13-adduct 19 as the single product, and thus, the methano-bridge controls the nucleophilic attack to prefer endo-selectivity. The photo-induced oxidation reaction of 16a and a vinylogous compound, 3-methylcyclohepta[4,5]furo[2,3-d]pyrimidine-2,4(3H)-dione 2a, toward some amines under aerobic conditions were carried out to give the corresponding imines (isolated by converting to the corresponding 2,4-dinitrophenylhydrazones) with the recycling number of 6.1-64.0 (for 16a) and 2.7-17.2 (for 2a), respectively.  相似文献   

11.
The syntheses are reported of new cyclomanganated indole derivatives (1-acetyl-κO-indolyl-κC2)dicarbonylbis(trimethylphosphite)manganese (2), (1-methyl-3-acetyl-κO-indolyl-κC2)tetracarbonylmanganese (4), (3-formyl-κO-indolyl-κC2)tetracarbonylmanganese (5a) and (1-methyl-3-formyl-κO-indolyl-κC2)tetracarbonylmanganese (5b). The unusually complicated crystal structure of 5b has been determined, the first for a cyclomanganated aryl aldehyde.The preparations of a mitomycin-related pyrrolo-indole and related products by thermally promoted and oxidatively (Me3NO) initiated alkyne-coupling reactions of the previously known complex (1-acetyl-κO-indolyl-κC2)tetracarbonylmanganese (1) are reported for different alkynes and solvents. X-ray crystal structures are reported for the dimethyl acetylenedicarboxylate coupling product of 1 (dimethyl 1-methyl-l-hydroxypyrrolo[1,2a]-indole-2,3-dicarboxylate; 6a), and an unusually-cyclised triple insertion product 8 from the coupling of acetylene with 4, in which a cyclopentadiene moiety is η3-allyl-coordinated to Mn through only one double bond and an exocyclic carbon, but which rearranges on heating to an η5-cyclopentadienyl complex.  相似文献   

12.
Two macrocyclic peptides 1a and 1b were synthesized directly from ε-aminoquinolinecarboxylic acid 2a and 2b, respectively. The preorganization of the uncyclized intermediates mediated by hydrogen bonding assisted the cyclization. The structures of 1a and 1b were characterized by 1H and 13C NMR spectroscopy and MALDI-TOF MS analysis. Solid state structure of 1a was investigated by single crystal X-ray studies. Their aggregation behaviors in solution were studied by both variable concentration and temperature 1H NMR experiments.  相似文献   

13.
Two triphenylphosphine derivatives, diethyl [4-(diphenylphosphanyl)benzyl]phosphonate (3a) and tetraethyl {[5-(diphenylphosphanyl)-1,3-phenylene]dimethylene}bis(phosphonate) (3b), and also the corresponding free acids 4a and 4b were prepared. These ligands were characterized by 1H, 13C and 31P NMR spectroscopy and mass spectrometry. A full set of their Pd(II) and Pt(II) complexes of the general formula [MCl2L2] and one dinuclear complex trans-[Pd2Cl4(3a)2] were synthesized and their isomerization behaviour in solution was studied. The complexes were characterized by 1H, 13C, 31P and 195Pt NMR spectroscopy, mass spectrometry and far-IR spectroscopy. The X-ray structures of all complexes with 3a or 3b have usual slightly distorted square-planar geometry on the metal ion. Salts of phosphonic acids 4a and 4b and their complexes are freely soluble in aqueous solution; therefore, they can be potentially useful in aqueous or biphasic catalysis.  相似文献   

14.
The reactions of hexachlorocyclotriphosphazene, N3P3Cl6, with N/O donor type N-alkyl or (aryl)-o-hydroxybenzylamines HO(C6H4)CH2NHR(Ar), [R(Ar) = C(CH3)3 (1), Ph (2)] produce monospirocyclic tetrachlorocyclotriphosphazenes (1a and 2a). The geminal substituted cyclotriphosphazenes (1b, 1d, 2b and 2d) are obtained from the reactions of 1 equiv. of 1a and 2a with 2 equiv. of pyrrolidine or morpholine in THF, while the fully substituted phosphazenes (1c, 1e, 2c and 2e) are formed from the reactions of 1a and 2a with the excess pyrrolidine or morpholine in toluene, between 24 and 48 h. The microwave-assisted reactions of 1a and 2a with excess pyrrolidine or morpholine in toluene afford the fully substituted products with higher yields than those which were obtained by conventional methods. The structural investigations of the compounds have been verified by elemental analyses, ESI-MS, FTIR, 1H, 13C, 31P NMR and HETCOR techniques. The crystal structure of 2a is determined by X-ray crystallography and the phosphazene ring is in the flattened boat form. Compounds 1b, 1d, 2b and 2d in which the spiro aryloxy moiety provides the one centre of chirality exist as racemates and the chirality has been confirmed by 31P NMR spectroscopy on addition of a chiral solvating agent (CSA), (S)-(+)-2,2,2-trifluoro-1-(9′-anthryl)ethanol.  相似文献   

15.
Triorganotin chlorides Me3SnCl and (LNC)Me2SnCl (LNC = 2-[(dimethylamino)methyl]phenyl) reacted with potassium 1′-(diphenylphosphino)-1-ferrocenecarboxylate to give the respective carboxylates, Ph2PfcCO2SnMe3 (1) and Ph2PfcCO2SnMe2(LNC) (2; fc = ferrocene-1,1′-diyl), while the analogous triphenylstannyl derivative 3 resulted by condensation of Ph3SnOH with 1′-(diphenylphosphino)-1-ferrocenecarboxylic acid (Hdpf). Compounds 1 and 2 were smoothly oxidized with hydrogen peroxide or elemental sulfur to afford the corresponding P-chalcogen derivatives (P-oxides 1a and 2a; P-sulfides 1b and 2b). All compounds were characterized by multinuclear NMR, IR and mass spectroscopy, and the solid-state structures of 1, 1a, 2, 2a and 2b were determined by single-crystal X-ray diffraction. In the crystal structures of 1 and 1a, the tin atoms were found with distorted trigonal bipyramidal coordination environments completed by the CO or PO oxygens, respectively, from adjacent molecules, which in turn resulted in the formation of infinite linear assemblies. Tin atoms in 2, 2a, and 2b were found with trigonal bipyramidal surrounding as well, though with the donor substituent LNC assuming one of the axial donor sites. Compounds 2 and 2a crystallized as stoichiometric hydrates (2·1/2H2O, 2a·H2O), in which the water molecules served as hydrogen bond donors for the polar groups (CO and PO) and thus aided the formation of closed H-bonded assemblies; the structure of 2b was essentially molecular.  相似文献   

16.
The study has been carried out to evaluate the feasibility of synthesis of 1-methyl-, 2-methyl-, 1,2-dimethyl-, and 1-ethyl-2-methylphenanthrene through the annulation of the naphthalene system with the exploitation of the dicyanovinyl moiety of 2-naphthylalkylidenemalonodinitriles as an active electrophile in cold solutions of concentrated sulfuric acid. 2-(2-Naphthyl)propanal (3), 1-(2-naphthyl)propan-2-one (9), 3-(2-naphthyl)butan-2-one (14), and 3-(2-naphthyl)pentan-2-one (19) had been condensed with malonodinitrile to afford 2-naphthylalkylidenemalonodinitriles which were then cyclised to give 4-amino-1-methylphenanthrene-3-carbonitrile (5), 4-amino-2-methylphenanthrene-3-carbonitrile (11), 4-amino-1,2-dimethylphenanthrene-3-carbonitrile (16), and 4-amino-1-ethyl-2-metylphenanthrene-3-carbonitrile (21). The nitrile function has been removed from the aminonitriles, with the exception of 21, through hydrolysis and decarboxylation in alkaline ethanolic solutions under elevated pressure (∼3 MPa) and temperature 220-230°C to give the respective 4-amino-methylphenanthrenes. Diazotisation of the phenanthreneamines and the reaction with hypophosphorus acid has lead to the methylphenanthrenes in moderate yields (50-52%).  相似文献   

17.
Bis(p-substituted benzoylmethyl)tellurium dibromides, (p-YC6H4COCH2)2TeBr2, (Y=H (1a), Me (1b), MeO (1c)) can be prepared either by direct insertion of elemental Te across CRf-Br bonds (where CRf refers to α-carbon of a functionalized organic moiety) or by the oxidative addition of bromine to (p-YC6H4COCH2)2Te (Y=H (2a), Me (2b), MeO (2c)). Bis(p-substituted benzoylmethyl)tellurium dichlorides, (p-YC6H4COCH2)2TeCl2 (Y=H (3a), Me (3b), MeO (3c)), are prepared by the reaction of the bis(p-substituted benzoylmethyl)tellurides 2a-c with SO2Cl2, whereas the corresponding diiodides (p-YC6H4COCH2)2TeI2 (Y=H (4a), Me (4b), MeO (4c)) can be obtained by the metathetical reaction of 1a-c with KI, or alternatively, by the oxidative addition of iodine to 2a-c. The reaction of 2a-c with allyl bromide affords the diorganotellurium dibromides 1a-c, rather than the expected triorganotelluronium bromides. Compounds 1-4 were characterized by elemental analyses, IR spectroscopy, 1H, 13C and 125Te NMR spectroscopy (solution and solid-state) and in case of 1c also by X-ray crystallography. (p-MeOC6H4COCH2)2TeBr2 (1c) provides, a rare example, among organotellurium compounds, of a supramolecular architecture, where C-H-O hydrogen bonds appear to be the non-covalent intermolecular associative force that dominates the crystal packing.  相似文献   

18.
The reactions of organoantimony chlorides L1,2SbCl21 and 2 ([2,6-(ROCH2)2C6H3], R = Me; L1 and R = t-Bu; L2) with silver salts of selected carboxylic acids resulted to corresponding organoantimony carboxylates L1,2Sb(OOCR′)2, 1a-c (for L1) and 2a-c (for L2), where R′ = CH3 for 1a, 2a; R′ = CHCH2 for 1b, 2b and R′ = CF3 for 1c, 2c. All compounds were characterized by the help of elemental analysis, ESI-MS, 1H and 13C NMR spectroscopy. The solid state structure investigation using single crystal X-ray diffraction techniques (2a, c) and IR spectroscopy revealed significant differences in coordination mode of both O,C,O chelating ligand and carboxylic groups in this set of compounds. The structure of all compounds in solution of non-coordinating solvent (CDCl3) was determined by means of variable temperature 1H, 13C, 19F NMR spectroscopy and IR spectroscopy.  相似文献   

19.
N,N′-Pyromelliticdiimido-di-l-methionine (3) was prepared from the reaction of pyromellitic dianhydride (1) with l-methionine (2) in glacial acetic acid and pyridine solution at refluxing temperature. The direct polycondensation reaction of the monomer diimide-diacid (3) with 1,3-phenylenediamine (4a), 1,4-phenylenediamine (4b), 2,6-diaminopyridine (4c), 3,5-diaminopyridine (4d), 4,4′-diaminodiphenylether (4e) and 4,4′-diaminodiphenylsulfone (4f) was carried out in a medium consisting of triphenyl phosphate, N-methyl-2-pyrolidone, pyridine and calcium chloride. The resulting poly(amide-imide)s having inherent viscosities 0.45-0.53 dl g−1 were obtained in high yields and are optically active and thermally stable. All of the above compounds were fully characterized by IR spectroscopy, elemental analyses and specific rotation. Some structural characterization and physical properties of these new optically active poly(amide-imide)s are reported.  相似文献   

20.
N-Butadienylsuccinimide (1), iso-propyl N-butadienyl-(S)-pyroglutamate (5) and N-butadienyl-(R)-4-phenyloxazolidin-2-one (6) reacted with vinylphosphonates, vicinally-substituted (2) by electronwithdrawing groups (CO2Me, CN, COMe), to furnish [4+2] cycloadducts (3-4,7-10, and 11-14) in moderate to good yields (40-88%). The reactions were highly selective: regioselectivity of 95-100%, endoselectivity of 75-92% and facial selectivity of 80-95%. The major diastereoisomers were fully characterized by 1H and 13C NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号