首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In this review, the preparation and properties of protein architectures constructed by layer-by-layer (LbL) deposition through avidin–biotin and concanavalin A (Con A)–sugar interactions are discussed in relation to their use for optical and electrochemical biosensors. LbL films can be constructed through the alternate deposition of avidin and biotin-labeled enzymes on the surfaces of optical probes and electrodes. The enzymes retain their catalytic activity, resulting in the formation of optical and electrochemical biosensors. Alternatively, Con A can be used to construct enzyme-containing LbL films and microcapsules using sugar-labeled enzymes. Some enzymes such as glucose oxidase and horseradish peroxidase can be used for this purpose without labeling with sugar, because these enzymes contain intrinsic hydrocarbon chains on their molecular surfaces. The Con A/enzyme LbL architectures were successfully used to develop biosensors sensitive to specific substrates of the enzyme. In addition, Con A-based films can be used for the optical and electrochemical detection of sugars.  相似文献   

2.
Protein cage architectures such as viral capsids, heat shock proteins, ferritins, and DNA-binding proteins are nanoscale modular subunits that can be used to expand the structural and functional range of composite materials. Here, layer-by-layer (LbL) assembly was used to incorporate cowpea chlorotic mottle virus (CCMV) into multilayer films. Three types of multilayer films were prepared. In the first type, ionic interactions were employed to assemble CCMV into triple layers. In the second type, complementary biological interactions (streptavidin/biotin) were used for this purpose. In a third variation of LbL assembly, complementary biological interactions were employed to produce nanotextured films that exhibit in-plane order over a micron scale without the need to adsorb onto a prepatterned template.  相似文献   

3.
The buildup of biodegradable poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) multilayers on silica and titanium surfaces and the immobilization of enamel matrix derivate (EMD) protein was followed by utilizing in situ ellipsometry, quartz crystal microbalance with dissipation, and dual-polarization interferometry (DPI). The use of the relatively new DPI technique validated earlier published ellipsometry measurements of the PLL-PGA polypeptide films. The hydrophobic aggregating EMD protein was successfully immobilized both on top of and within the multilayer structures at pH 5.0. DPI measurements further indicated that the immobilization of EMD is influenced by the flow pattern during adsorption. The formed polypeptide-EMD multilayer films are of interest since it is known that EMD is able to trigger cell response and induce biomineralization. The multilayer films thus have potential to be useful as bioactive and biodegradable coatings for future dental implants.  相似文献   

4.
层-层自组装构建固相可降解基因传递体系的研究   总被引:2,自引:1,他引:1  
近年来,随着人类对基因研究的深入,基因治疗作为一种新的手段,受到人们的广泛重视.在组织工程材料、介入医用材料和医用植入体的应用中,与传统的溶液给药方式不同,基因技术需要一种可直接作用于材料表面贴壁细胞的长效、高转染固相基因传递体系.目前,国内外研究者将蛋白质药  相似文献   

5.
We report on the investigation of the surface morphology and DC conductivity of nanostructured layer-by-layer (LbL) films from nickel tetrasulfonated phthalocyanine (NiTsPc) alternated with either multi-walled carbon nanotubes (MWNTs/NiTsPc) or multi-walled carbon nanotubes dispersed in chitosan (MWNTs+Ch/NiTsPc). We have explored the surface morphology of the films by using fractal concepts and dynamic scale laws. The MWNTs/NiTsPc LbL films were found to have a fractal dimension of ca. 2, indicating a quasi Euclidean surface. MWNTs+Ch/NiTsPc LbL films are described by the Lai-Das Sarma-Villain (LDV) model, which predicts the deposition of particles and their subsequent relaxation. An increase in the wetting contact angle of MWNTs+Ch/NiTsPc LbL films was observed, as compared with MWNTs/NiTsPc LbL films, which presented an increase in the fractal dimension of the first system. Room temperature conductivities were found be ca. 0.45 S/cm for MWNTs/NiTsPc and 1.35 S/cm for MWNTs+Ch/NiTsPc.  相似文献   

6.
Biomaterials capable of suppressing microbial infection are of clear importance in various health care applications, e.g. implantable devices. In this study, we investigate the antimicrobial activity of single-walled carbon nanotubes (SWNT) layer-by-layer (LbL) assembled with the polyelectrolytes poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA). SWNT dispersion in aqueous solution is achieved through the biocompatible nonionic surfactant polyoxyethylene(20) sorbitan monolaurate (Tween 20), and the amphiphilic polymer phospholipid-poly(ethylene glycol) (PL-PEG). Absorbance spectroscopy and transmission electron microscopy (TEM) show SWNT with either Tween 20 or PL-PEG in aqueous solution to be well dispersed, at about the level of SWNT in chloroform. Quartz crystal microgravimetry with dissipation (QCMD) measurements show both SWNT-Tween and SWNT-PL-PEG to LbL assemble with PLL and PGA into multilayer films, with the PL-PEG system yielding the greater final SWNT content. Escherichia coli and Staphylococcus epidermidis inactivation rates are significantly higher (up to 90%) upon 24 h incubation with SWNT containing films, compared to control films (ca. 20%). This study demonstrates the potential usefulness of SWNT/PLL/PGA thin films as antimicrobial biomaterials.  相似文献   

7.
The fabrication of varied molecular architectures in layer-by-layer (LbL) films is exploited to control the photoluminescence (PL) of poly(p-phenylene vinylene) (PPV) in an unprecedented way. This was achieved by controlling the F?rster energy transfer between PPV layers (donors) and layers of a commercial azodye, Brilliant Yellow (BY) (acceptors). Energy transfer was controlled by inserting spacer layers of inert polymers between PPV and BY layers and by photoaligning the BY molecules via trans-cis-trans isomerization. The PPV/BY LbL films displayed polarized PL whose intensity could be varied almost continuously by changing the time of photoalignment, which was carried out by impinging a linearly polarized laser light simultaneously to the PL experiments. For PPV/BY films with no spacer layers, PL was completely quenched, but its intensity increased with the number of spacing layers. Further increase in PL was obtained by photoaligning the BY molecules perpendicularly to the PPV molecules. This minimizes energy transfer, since F?rster processes are directional, dipole-dependent resonant transfers. Energy transfer is also controlled by imparting a preferential orientation of the PPV chains on PPV/BY LbL films deposited onto flexible Teflon substrates that may be stretched.  相似文献   

8.
Novel layer-by-layer (LbL) assembly films composed of poly( L-lysine) (PLL) and poly( D-lactic acid) (PDLA) were prepared by the alternate immersion of a gold substrate into an aqueous PLL solution and an acetonitrile solution of PDLA. The formation of the LbL assembly film was confirmed by quartz crystal microbalance (QCM) analysis, atomic force microscopy observation, and attenuated total reflection Fourier transform infrared spectroscopy measurement. The driving force responsible for the LbL assembly was determined by investigating the formation behavior of the LbL assembly under various conditions. The formation of the LbL assembly was not affected either by the stereochemistry of polylysine and poly(lactic acid) or by the addition of urea, which is known to inhibit hydrogen bonding interaction between polymers, into the aqueous PLL solution. The LbL assembly was also formed by the combination of PDLA and polycations other than polylysine, such as poly(diallyldimethylammonium chloride). On the other hand, the combination of PDLA and any polyanions such as poly(styrene sulfonate sodium salt) produced little corresponding LbL assembly. The increase in positive charge on the amino nitrogen atom of PLL enhanced the LbL assembly. These results suggest that the LbL assembly film composed of PLL and PDLA was fabricated by cation-dipole interactions between the positive charge on the amino nitrogen atom of PLL and the lone pairs of the carbonyl oxygen atom of PDLA.  相似文献   

9.
We fabricated a layer-by-layer (LbL) film of temperature-responsive homopolymers at neutral pH and studied its temperature-dependent solubility. We first measured the cloud point of mixed solutions of temperature-responsive polymers. The significant decrease of cloud point suggested that the intermolecular interaction between two polymer chains of different kinds was stronger than that between two polymer chains of the same kind. Strong intermolecular interaction between two polymer chains of different kinds is a prerequisite for LbL assembly. On the basis of the decrease of cloud point of mixed solutions of temperature-responsive homopolymers, we selected poly(N-vinylcaprolactam) (PVCL) and poly(2-hydroxypropyl acrylate) (PHPA) for LbL assembly. LbL films of the two polymers were fabricated at neutral pH at a constant temperature. When the film was immersed in purified water at a temperature lower than the assembly temperature, it can be partially dissolved with a diffusion-limited dissolution process. The temperature-responsive solubility of the LbL film is closely connected to the phase behavior of mixed solutions of the two polymers. Additionally, as compared to multilayer films of neutral polymers and poly(carboxylic acid)s, the PVCL/PHPA multilayer film is relatively stable when it was immersed in buffer solutions near physiological pH at the assembly temperature. Such LbL films with temperature-responsive solubility might be used as a dissolvable film or a smart capsule.  相似文献   

10.
We report on a general lithography method for high-resolution biomolecule patterning with a bilayer resist system. Biomolecules are first immobilized on the surface of a substrate and covered by a release-and-protection interlayer of water-soluble polymer. Patterns can then be obtained by lithography with a spin-coated resist layer in a conventional way and transferred onto the substrate by reactive ion etching. Afterward, the resist layer is removed by dissolution in water. To demonstrate a high-resolution patterning, soft UV nanoimprint lithography has been used to produce high-density dot arrays of poly-(L-lysine) molecules on a glass substrate. Both fluorescence images and cell proliferation behaviors on such a patterned substrate have shown evidence of improved stability of biomolecule immobilization comparing to that obtained by microcontact printing techniques.  相似文献   

11.
The interactions between two poly(allylamine)/poly(styrene sulfonate) multilayers made of 4.5 and 5 bilayers are investigated by the surface force apparatus (SFA). As the two surfaces approach, one reaches a threshold point where a repulsion sets in, until they become barely compressible. Repetitive load/unload cycles show that, once compressed, the films remain almost in their compressed state. This indicates that the poly(allylamine)/poly(styrene sulfonate) films are in a glassy state, in marked difference with the SFA findings on poly-(L-lysine)/poly-L-glutamic acid) multilayers. These results are discussed in the light of linearly and exponentially growing films.  相似文献   

12.
The pH dependence of the conformation of poly-(L-lysine) with 4.6 mol% of its side chain amino groups attached to an azo dye, 4′ -dimethyl aminoazobenzene-4-carboxylic acid, has been studied. Circular dichroic spectra showed that in acidic as well as in neutral media the polymer exists in the random coil conformation, like that of poly-(L-lysine). In basic medium the polypeptide acquires a β-structure, unlike poly-(L-lysine) which exists in an α-helical conformation.  相似文献   

13.
The fabrication of controlled molecular architectures is essential for organic devices, as is the case of emission of polarized light for the information industry. In this study, we show that optimized conditions can be established to allow layer‐by‐layer (LbL) films of poly(p‐phenylene vinylene) (PPV)+dodecylbenzenesulfonate (DBS) to be obtained with anisotropic properties. Films with five layers and converted at 110 °C had a dichroic ratio δ = 2.3 and order parameter r = 34%, as indicated in optical spectroscopy and emission ellipsometry data. This anisotropy was decreased with the number of layers deposited, with δ = 1.0 for a 75‐layer LbL PPV + DBS film. The analysis with atomic force microscopy showed the formation of polymer clusters in a random growth process with the normalized height distribution being represented by a Gaussian function. In spite of this randomness in film growth, the self‐covariance function pointed to a correlation between clusters, especially for thick films. In summary, the LbL method may be exploited to obtain both anisotropic films with polarized emission and regular, nanostructured surfaces. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

14.
Biochemical applications of ultrathin films of enzymes, polyions and DNA   总被引:1,自引:0,他引:1  
This feature article summarizes recent applications of ultrathin films of enzymes and DNA assembled layer-by-layer (LbL). Using examples mainly from our own research, we focus on systems developed for biocatalysis and biosensors for toxicity screening. Enzyme-poly(L-lysine) (PLL) films, especially when stabilized by crosslinking, can be used for biocatalysis at unprecedented high temperatures or in acidic or basic solutions on electrodes or sub-micron sized beads. Such films have bright prospects for chiral synthesis and biofuel cells. Excellent bioactivity and retention of enzyme structure in these films facilitates their use in detailed kinetic studies. Biosensors and arrays employing DNA-enzyme films show great promise in predicting genotoxicity of new drug and chemical product candidates. These devices combine metabolic biocatalysis, reactive metabolite-DNA reactions, and DNA damage detection. Catalytic voltammetry or electrochemiluminescence (ECL) can be used for high throughput arrays utilizing multiple LbL "spots" of DNA, enzyme and metallopolymer. DNA-enzyme films can also be used to produce nucleobase adduct toxicity biomarkers for detection by LC-MS. These approaches provide valuable high throughput tools for drug and chemical product development and toxicity prediction.  相似文献   

15.
Influences of drying and nondrying steps on structures of layer-by-layer (LbL) assembled sodium silicate/TiO(2) nanoparticles films (donated as silicate/TiO(2) films) have been systematically investigated. The nondrying LbL assembly produces highly porous silicate/TiO(2) films with large thickness. In contrast, the silicate/TiO(2) films fabricated with a drying step after each layer deposition are flat and thin without porous structures. In situ atomic force microscopy (AFM) measurements confirm that the sodium silicate and TiO(2) nanoparticles are deposited in their aggregated forms. A N(2) drying step can disintegrate the aggregated silicate and TiO(2) nanoparticles to produce thin silicate/TiO(2) films with compact structures. Without the drying steps, the aggregated silicate and TiO(2) nanoparticles are well retained, and their LbL assembly produces highly porous silicate/TiO(2) films of large thickness. The highly porous silicate/TiO(2) films are demonstrated to be useful as reusable film adsorbents for dye removal from wastewater because they can adsorb a large amount of cationic organic dyes and decompose them under UV irradiation. The present study is meaningful for exploring drying/nondrying steps for tailoring structure and functions of LbL assembled films.  相似文献   

16.
Phosvitin, an egg yolk protein constituted by 50% of phosphorylated serines, presents good emulsifying properties whereas its interfacial properties are not yet clearly elucidated and remain object of discussion. Phosvitin has a high charge density and naturally forms aggregates through phosphocalcic bridges in egg yolk. This high charge density, doubled by this capacity to aggregate, limits the adsorption of the protein at the air-water interface. In this work, we investigated the aggregation impact by calcium ions on the organization of the phosvitin interfacial film using the atomic force microscopy. Phosvitin interfacial films without calcium ions are compared to phosvitin interfacial films formed in the presence of calcium ions in the subphase. We demonstrated that phosvitin is able to anchor at air-water interfaces in spite of its numerous negative charges. In the compression isotherm a transition was observed just before 28 mN/m signifying a possible modification of the interfacial film structure or organization. Calcium ions induce a reorganization towards a greater compaction of the phosvitin interfacial film even at low surface pressure. In conclusion we suggest that, in diluted regime, phosvitin molecules could adsorb by their two hydrophobic extremities exhibiting loops in the aqueous phase, whereas in concentred regime (high interfacial concentration) it would be adsorbed at the interface by only one extremity (brush model).  相似文献   

17.
The article is concerned with the layer-by-layer (LbL) assembly of electrochromic films using coordinative interactions between compounds. At first the concepts of coordinative supramolecular assembly are explained and examples are presented. Subsequently electrochromic LbL assemblies prepared upon electrostatic and/or coordinative interactions are briefly discussed. In the focus of the article are films of terpyridine(tpy)-functionalized polyiminoarylene metal ion complexes, which are prepared upon coordinative LbL assembly of the tpy-substituted polyiminoarylenes and metal ions. The films exhibit reversible electrochromic behavior with high contrast and fast response times. It is demonstrated that the electrochromic behavior of the films can be modified by a variation of polymer structure, metal ions, and counterions.  相似文献   

18.
We report the unique layer-by-layer (LbL) assembly behavior of pH-sensitive star-shaped polyelectrolytes with both linear and exponential growth modes controlled by star architecture and assembly conditions. Cationic poly[2-(dimethylamino)ethyl methacrylate] and anionic poly(acrylic acid) stars were synthesized via "core-first" atom-transfer radical polymerization (ATRP) based on multifunctional initiators, in addition to their linear analogues. We demonstrated the LbL growth behavior as a function of deposition pH (ranging from 5 to 7), number of layers (up to 30 bilayers), and the method of assembly (dip- vs spin-assisted LbL). The spin-assisted LbL assembly makes it possible to render smoother and thinner LbL films with parameters controlled by the shear rate and pH conditions. In contrast, for dip-assisted LbL assembly, the pH-dependent exponential growth was observed for both linear and star polyelectrolytes. In the case of linear/linear pair, the exponential buildup was accompanied with a notable surface segregation which resulted in dramatic surface nonuniformity, "wormlike" heterogeneous morphology, and dramatic surface roughening. In contrast, star/linear and star/star LbL films showed very uniform and smooth surface morphology (roughness below 2.0 nm on the scale of 10 μm × 10 μm) with much larger thickness reaching up to 1.0 μm for 30 bilayers and rich optical interference effects. Star polyelectrolytes with partially screened charges and high mobility caused by compact branched architecture appear to facilitate fast diffusion and exponential buildup of LbL films. We suggest that the fast buildup prevents long-range lateral diffusion of polyelectrolyte star components, hinders large-scale microphase separation, and thus leads to unique thick, smooth, uniform, transparent, and colorful LbL films from star polyelectrolytes in contrast to mostly heterogeneous films from traditional linear counterparts.  相似文献   

19.
智能响应与自修复的层层组装聚合物膜   总被引:2,自引:0,他引:2  
陈栋栋  马莹  孙俊奇 《高分子学报》2012,(10):1047-1054
具有刺激响应性和自修复功能的复合膜是重要的仿生功能膜材料.层层组装是一种基于物质交替沉积而制备复合膜的方法,可以实现膜的结构和组成的精确调控.通过结构与组成的精确调控,基于层层组装制备的微米厚度的聚电解质厚膜可以对外界刺激产生快速有效的响应,因而在制备智能仿生膜材料方面具有重要的价值.本文以作者的研究结果为基础,阐明了基于层层组装的聚电解质膜可以成功用于制备湿度和温度响应的双结构自支持膜和高效的促动器及行走机器,以及自修复超疏水和划痕修复聚电解质膜.  相似文献   

20.
We demonstrate that the surface morphology and surface-wetting behavior of layer-by-layer (LbL) films can be controlled using different deposition methods. Multilayer films based upon hydrogen-bonding interactions between hydrophobically modified poly(ethylene oxide) (HM-PEO) and poly(acrylic acid) (PAA) have been prepared using the dip- and spin-assisted LbL methods. A three-dimensional surface structure in the dip-assisted multilayer films appeared above a critical number of layer pairs owing to the formation of micelles of HM-PEO in its aqueous dipping solution. In the case of spin-assisted HM-PEO/PAA multilayer films, no such surface morphology development was observed, regardless of the layer pair number, owing to the limited rearrangement and aggregation of HM-PEO micelles during spin deposition. The contrasting surface morphologies of the dip- and spin-assisted LbL films have a remarkable effect on the wetting behavior of water droplets. The water contact angle of the dip-assisted HM-PEO/PAA LbL films reaches a maximum at an intermediate layer pair number, coinciding with the critical number of layer pairs for surface morphology development, and then decreases rapidly as the surface structure is evolved and amplified. In contrast, spin-assisted HM-PEO/PAA LbL films yield a nearly constant water contact angle due to the surface chemical composition and roughness that is uniform independent of layer pair number. We also demonstrate that the multilayer samples prepared using both the dip- and spin-assisted LbL methods were easily peeled away from any type of substrate to yield free-standing films; spin-assisted LbL films appeared transparent, while dip-assisted LbL films were translucent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号