首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates. Received: 25 April 2000/Accepted: 1 June 2001  相似文献   

2.
Experimental results are presented for the growth of surface waves on a liquid film that thins as it flows under gravity over the surface of an upright circular cone. The characteristics of the mean film are calculated on the assumption of quasi-parallel flow, and the actual mean thickness found to relate very closely to that found on this basis. The development of the film was found to fall into three phases: the entry zone in which the velocity profile of the film becomes established where no waves are visible, a region of wave growth in which amplitude, wave speed, and wave length all grow, and a final region in which amplitude and wave speed decline as the film thins further although wave length continues to grow. An empirical relationship is presented which expresses the wave number at any point on the cone in terms of the flow rate and a parameter based on the local Reynolds and Weber numbers and cone angle. It was found that for a given flow rate the maximum wave amplitude was reached at a value of wave number of 0·048.  相似文献   

3.
Heat transfer in a film flow of the FC-72 dielectric liquid down a vertical surface with an embedded 150×150 mm heater is experimentally examined in the range of Reynolds numbers Re = 5–375. A chart of liquid-film flow modes is constructed, and characteristic heat-transfer regions are identified. Data on the dependence of heater-wall temperature and local heat flux at the axis of symmetry of the heater on the longitudinal coordinate are obtained. Local and mean heat-transfer coefficients are calculated. It is shown that enhanced heat transfer is observed in the region where rivulets starts forming in the low-Reynolds-number liquid-film flow.  相似文献   

4.
The rimming flow of a power-law fluid in the inner surface of a horizontal rotating cylinder is investigated. Exploiting the fact that the liquid layer is thin, the simplest lubrication theory is applied. The generalized run-off condition for the steady-state flow of the power-law liquid is derived. In the bounds implied by this condition, film thickness admits a continuous solution. In the supercritical case when the mass of non-Newtonian liquid exceeds a certain value or the speed of rotation is less than an indicated limit, a discontinuous solution is possible and a hydraulic jump may occur in the steady-state regime. The location and height of the hydraulic jump for the power-law liquid is determined. Received 8 February 2001 and accepted 19 June 2001  相似文献   

5.
The paper considers heat transfer characteristics of thin film flow over a hot horizontal cylinder resulting from a cold vertical sheet of liquid falling onto the surface. The underlying physical features of the developing film thickness, velocity and temperature distributions have been illustrated by numerical solutions of high accuracy for large Reynolds numbers using the modified Keller box method. The solutions for film thickness distribution are good agreement with those obtained using the Pohlhausen integral momentum technique thus providing a basic confirmation of the validity of the results presented.  相似文献   

6.
Surface instabilities of thin liquid film flow on a rotating disk   总被引:1,自引:0,他引:1  
 Steady flow of a liquid jet from a nozzle onto the centre of a rotating disk is studied with a streak line method to determine the superficial velocity of the spreading liquid film. Good agreement is found with an asymptotic analysis of the unperturbed flow field. Experimentally, the liquid surface is always perturbed by surface waves which appear as regular spirals, steady in the laboratory system in the low Reynolds number range. It could be shown that wave formation is very sensitive to entrance conditions. Therefore, it is assumed that wave generation is an entrance effect which acts as periodic forcing on the forming liquid film. Wave velocities outside the entrance region are measured and proved to be in good agreement with the prediction of a linear stability theory, as long as the flow rate and entrance perturbations are small. At higher flow rates or stronger disturbances, the radial development of the wave velocities takes on the characteristics predicted by nonlinear stability theories and is in qualitative agreement with experiments performed on an inclined plane. Received: 15 January 1998/Accepted: 8 June 1998  相似文献   

7.
Transition of plug to slug flow is associated with bubble detachment from elongated bubble tail or bubble entrainment inside the liquid slug. The mechanism responsible for this transition was earlier identified by Ruder and Hanratty (1990) and Fagundes Netto et al. (1999) based on the shape of the hydraulic jump observed at elongated bubble tail region. The transition mechanism reported by Ruder and Hanratty (1990) and Fagundes Netto et al. (1999) was only based on their flow visualization study. Plug to slug transition and associated dynamics of bubble detachment from the elongated bubble is analysed in the present paper using flow visualization and local velocity measurements. Experiments are reported for 13 different inlet flow conditions of air and water phases. Images of plug/slug flow structures are captured at a rate of 4000 FPS using FASTCAM Photron camera and the local values of axial liquid velocity are measured using LDV system synchronised with a 3D automated traverse system. LDV measurement of local liquid velocity in the liquid slug and liquid film establishes the reason for detachment of bubbles from the slug bubble tail.  相似文献   

8.
An experimental investigation of thermocapillary deformations in a film of 10% ethyl alcohol solution in water, flowing down a plate with a heater of length 6.7 mm and width 68 mm, is performed. Heating of the film results in the formation of a horizontal liquid bump at the top edge of the heater. On the heater the flow divides into vertical rivulets with a thin film between them. Film deformations in the bump and the thin film between the rivulets are investigated. Local film thickness is measured by means of a double-fiber optical probe. The method is based on the dependence of the intensity of reflected light on the distance between the probe and the reflecting surface. The measurement results are compared to those previously obtained using the schlieren method. The experiment is controlled by three parameters. They are, with their respective values, the plate inclination angle (4–90°), the Reynolds number (0.15–62) and the heat flux density (0–4.5 W/cm2).  相似文献   

9.
The flow of a liquid in thin layers is one of the hydrodynamic problems of chemistry and heat engineering. The large surface area of films and their small thickness make it possible to accelerate thermal, diffusive, and chemical processes at the gas-liquid boundary.Theoretical studies of liquid flow in a vertical descending thin layer are presented in [1–4]. In this paper we study ascending wave flows of a liquid in a thin vertical layer in contact with a gas, i.e., flows in the direction opposite the action of the force due to gravity, with account for the action of the gas on the liquid surface. Such motions are encountered when oil is extracted from strata that are saturated with gas. At some distance from the stratum the oil and gas separate: the gas travels at high velocity inside the pipe, occupying a considerable portion of the pipe, and the liquid is displaced toward the pipe walls, forming a thin film. In certain cases a wave-like interface develops between the oil and gas that travels with a velocity greater than that of the liquid but less than the average gas velocity. Similar phenomena are observed in high velocity mass exchangers.We examine the effect of the gas for both laminar and turbulent flow.Studies that neglect the effect of the gas flow on the liquid show that for waves on the film surface whose lengths are considerably longer than the average thickness of the layer, the liquid motion in the film is described by boundary layer equations in which account is taken of the mass force, i.e., the force due to gravity. With some approximation, we can assume that in accounting for the effect of the gas on the liquid the liquid flow is described by these same equations.  相似文献   

10.
The present work describes a numerical procedure to simulate the development of hydrodynamic entry region in a gravity-driven laminar liquid film flow over an inclined plane. It provides a better insight into the physics of developing film in entry region. A novel numerical approach is proposed which has the potential to provide solutions for the complex physics of liquid film spreading on solid walls. The method employs an incompressible flow algorithm to solve the governing equations, a PLIC-VOF method to capture the free surface evolution and a continuum surface force (CSF) model to include the effect of surface tension. To account for the moving contact line on the solid substrate, a precursor film model based wall treatment is implemented. Liquid film flow has been simulated for the Reynolds number range of 5 ≤ Re ≤ 37.5, and the predicted results are found to agree well with the available analytical and experimental data.  相似文献   

11.
The unsteady thin conducting liquid film of non-uniform thickness on a rotating disk which is cooled axisymmetrically from below has been analysed numerically by solving the evolution equation of the free surface. Transient film profiles for different initial liquid film distributions have been obtained. The results reveal that the thinning process and film planarisation are markedly influenced by the heat dissipating or cooling parameter β, Prandtl number σ and Reynolds number Re.  相似文献   

12.
Experimental studies on the turbulence modification in annular two-phase flow passing through a throat section were carried out. The turbulence modification in multi-phase flow due to the interactions between two-phases is one of the most interesting scientific issues and has attracted research attention. In this study, the gas-phase turbulence modification in annular flow due to the gas–liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves.  相似文献   

13.
On the spin coating of viscoplastic fluids   总被引:3,自引:0,他引:3  
The spin coating of a viscoplastic material is studied using a continuous viscosity function. Thus, the transient model requires the calculation of only velocity, pressure and the moving-free surface of the liquid film, but not the calculation of the yield surface within the liquid. A Finite Element/Newton-Raphson method is presented for solving this moving boundary problem after mapping the deforming domain onto a fixed one. Assuming axial symmetry, the effect of the Bingham, Reynolds, Capillary and gravitational Bond numbers is examined. The magnitude of the first two parameters affects significantly the flow field and the shape of the film as well as the required spinning time in order to produce a film of uniform thickness. Depending on their values, large departures from the corresponding Newtonian solution may be obtained. In these cases the film does not thin out uniformly, but a maximum in its profile is created at the center of the disk. Then, the magnitude of the Capillary number also affects the size of this maximum. The gravitational Bond number affects the film thickness and its profile to a lesser extent.Dedicated to the memory of Professor Tasos C. Papanastasiou  相似文献   

14.
Slug flow is one of the representative flow regimes of two-phase flow in micro tubes. It is well known that the thin liquid film formed between the tube wall and the vapor bubble plays an important role in micro tube heat transfer. In the present study, experiments are carried out to clarify the effects of parameters that affect the formation of the thin liquid film in micro tube two-phase flow. Laser focus displacement meter is used to measure the thickness of the thin liquid film. Air, ethanol, water and FC-40 are used as working fluids. Circular tubes with five different diameters, D = 0.3, 0.5, 0.7, 1.0 and 1.3 mm, are used. It is confirmed that the liquid film thickness is determined only by capillary number and the effect of inertia force is negligible at small capillary numbers. However, the effect of inertia force cannot be neglected as capillary number increases. At relatively high capillary numbers, liquid film thickness takes a minimum value against Reynolds number. The effects of bubble length, liquid slug length and gravity on the liquid film thickness are also investigated. Experimental correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number is proposed.  相似文献   

15.
Jet formation was studied in the region of two-dimensional and three-dimensional waves in a heated liquid film flowing down a vertical surface. Jet-to-jet spacings were measured versus the film Reynolds number and the heat flow density. Three-dimensional waves on the film surface were formed naturally or by artificial perturbations. In addition to the thermocapillary mechanism of jet formation, a thermocapillary–wavy mechanism was found to exist.  相似文献   

16.
Heat transfer in falling liquid film systems is enhanced by waviness. Comprehension of the underlying kinetic phenomena requires experimental data of the temperature field with high spatiotemporal resolution. Therefore a non-invasive measuring method based on luminescence indicators is developed. It is used to determine the temperature distribution and the local film thickness simultaneously. Results are presented for the temperature distribution measurement in a laminar-wavy water film with a liquid side Reynolds number of 126 flowing down a heated plane with an inclination angle of 2° at two positions in flow direction. The measured temperature distributions are used to calculate the local heat transfer coefficient for solitary waves at two positions in flow direction.  相似文献   

17.
This paper presents the measurements of the flow in the space between an enclosed corotating disk pair using particle image velocimetry (PIV) and laser doppler velocimetry (LDV). LDV gives the time history of velocity for time-domain analysis, while PIV provides the spatial distribution of the instantaneous velocity. A flow visualization technique displaying the concentration distribution of seeding particles was also employed to visualize the flow patterns. Experiments were conducted on the interdisk midplane with a Reynolds number of 5.25×105. Based on the LDV measured rotating frequency of the vortices around the hub, the phase-resolved PIV measurements were achieved, and a rotating reference coordinate system was employed to represent the flow patterns. The phase-resolved measurements reveal that the circumferential flow velocity oscillates periodically in both the inner and outer regions but in opposite trends. Based on the phase averaged data, the contributions of the periodic and random motions to the Reynolds stresses were evaluated, and the spatial distributions of the periodic Reynolds stresses were displayed. It is found that, the local rotation of the fluid induced by the deformation of the inner region contribute to a significant portion of the momentum transport.  相似文献   

18.
We report an experimental investigation of a falling water film sheared by a turbulent counter-current air flow in an inclined rectangular channel. Film thickness and wave velocity measurements associated with visual observation are conducted to study the influence of the air flow on controlled traveling waves consisting of a large wave hump preceded by capillary ripples. First, we focus on the variation of the shape, amplitude and velocity of the waves as the gas velocity is gradually increased. We demonstrate that the amplitude of the main hump grows substantially even for moderate gas velocities, whereas modification of the wave celerity becomes significant above a specific gas velocity around 4 m/s, associated with an alteration of the capillary region. The influence of the gas flow on 3D secondary instabilities of the solitary waves detected in a previous study Kofman et al. (2014), namely rugged or scallop waves, is also investigated. We show that the capillary mode is damped while the inertial mode is enhanced by the interfacial shear. Next, the gas velocity is increased until the onset of upstream-moving patterns referred to as flooding in our experiments. At moderate inclination angles (typically < 7), flooding occurs for a gas velocity around 8 m/s and is initiated at the scallop wave crests by a backward wave-breaking phenomenon preceded by the onset of ripples on the flat residual film separating two waves. At high inclination angle, a rapid development of solitons is observed as the air velocity is increased preventing the waves to turn back. Finally, at high liquid Reynolds number, sudden and intermittent events are triggered consisting of very large amplitude waves that go back upwards very fast. These “slugs” either extend over the whole width of the channel or are very localized and can thus potentially evolve towards atomization.  相似文献   

19.
In micro channels, slug flow becomes one of the main flow regimes due to strong surface tension. In micro channel slug flow, elongated bubble flows with the thin liquid film confined between the bubble and the channel wall. Liquid film thickness is an important parameter in many applications, e.g., micro heat exchanger, micro reactor, coating process etc. In the present study, liquid film thickness in micro square channels is measured locally and instantaneously with the confocal method. Square channels with hydraulic diameter of Dh = 0.3, 0.5 and 1.0 mm are used. In order to investigate the effect of inertial force on the liquid film thickness, three working fluids, ethanol, water and FC-40 are used. At small capillary numbers, liquid film at the channel center becomes very thin and the bubble interface is not axisymmetric. However, as capillary number increases, bubble interface becomes axisymmetric. Transition from non-axisymmetric to axisymmetric flow pattern starts from lower capillary number as Reynolds number increases. An empirical correlation for predicting axisymmetric bubble radius based on capillary number and Weber number is proposed from the present experimental data.  相似文献   

20.
 Circular and spiral waves are observed in the flow between a rotating and a stationary disk. These waves are generated by instabilities of the stationary disk boundary layer. This experimental work is devoted to their study by means of flow visualization and measurements of the associated velocity fields. In particular, instantaneous velocity profiles are measured by ultrasonic Doppler anemometry. The spatio-temporal characteristics of the waves are studied with the help of Fourier transforms of these velocity signals. Received: 21 April 1997/Accepted: 2 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号