首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow boiling heat transfer in a vertical spirally internally ribbed tube   总被引:3,自引:0,他引:3  
 Experiments of flow boiling heat transfer and two-phase flow frictional pressure drop in a spirally internally ribbed tube (φ22×5.5 mm) and a smooth tube (φ19×2 mm) were conducted, respectively, under the condition of 6×105 Pa (absolute atmosphere pressure). The available heated length of the test sections was 2500 mm. The mass fluxes were selected, respectively, at 410, 610 and 810 kg/m2 s. The maximum heat flux was controlled according to exit quality, which was no more than 0.3 in each test run. The experimental results in the spirally internally ribbed tube were compared with that in the smooth tube. It shows that flow boiling heat transfer coefficients in the spirally internally ribbed tube are 1.4–2 times that in the smooth tube, and the flow boiling heat transfer under the condition of smaller temperature differences can be achieved in the spirally internally ribbed tube. Also, the two-phase flow frictional pressure drop in the spirally internally ribbed tube increases a factor of 1.6–2 as compared with that in the smooth tube. The effects of mass flux and pressure on the flow boiling heat transfer were presented. The effect of diameters on flow boiling heat transfer in smooth tubes was analyzed. Based on the fits of the experimental data, correlations of flow boiling heat transfer coefficient and two-phase flow frictional factor were proposed, respectively. The mechanisms of enhanced flow boiling heat transfer in the spirally internally ribbed tube were analyzed. Received on 1 December 1999  相似文献   

2.
In the present study, the regionally-averaged heat transfer coefficients and flow temperature distributions were measured in an equilateral triangular channel with three different rib arrangements (α = 45, 90 and 135°). To measure regionally-averaged heat transfer coefficients in the channel, two rows of copper blocks and a single heater were installed on two ribbed walls. The fluid temperature distributions were obtained using a thermocouple-array. The rotation number ranged from 0.0 to 0.1 with a fixed Reynolds number of 10,000. For the 90° ribs, the heat transfer coefficients on the pressure side surface were increased significantly with rotation, while the suction side surface had lower heat transfer coefficients than the stationary channel. For the angled ribs, rib-induced secondary flow dominated the heat transfer characteristics and high heat transfer rates were observed on the regions near the inner wall for the 45° angled ribs and near the leading edge for the 135° angled ribs.  相似文献   

3.
The flow boiling heat transfer coefficients of R-134a/R-290/R-600a (91%:4.068%:4.932% by mass) refrigerant mixture are experimentally arrived in two tubes of diameter 9.52 and 12.7 mm. The tests are conducted to target the varied heat flux condition and stratified flow pattern found in evaporators of refrigerators and deep freezers. The varied heat flux condition is imposed on the refrigerant using a coaxial counter-current heat exchanger test section. The experiments are performed for mass flow rates of the refrigerant mixture between 3 and 5 g s−1 and entry temperature between −8.59 and 5.33°C which are bubble temperatures corresponding to a pressure of 3.2 and 5 bar. The influences of heat flux, mass flow rate, pressure, flow pattern, tube diameter on the heat transfer coefficient are discussed. The profound effects of nucleate boiling prevailing even at higher vapor qualities in evaporators are highlighted. The heat transfer coefficient of the refrigerant mixture is also compared with that of R-134a.  相似文献   

4.
Acetone fluorescence provides a useful way to visualize the fluid mixing process within supersonic wind tunnels, some of which operate in the low temperature (240–300 K) and low pressure range (0.1–1 atm). Measurements are presented to quantify the dependence of the acetone laser induced fluorescence (LIF) signal on temperature and pressure in this range. The temperature and pressure sensitivity of the acetone LIF signal resulted in less than an 8% variation over the experimental conditions for a laser excitation wavelength of 266 nm. Condensation of the acetone vapor was identified as a potential problem for this diagnostic technique. Methods to prevent and check for condensation are discussed. Received: 5 October 1998/Accepted: 10 April 1999  相似文献   

5.
The heat transfer characteristics of the condensation of ethanol–water binary vapor on vertical tubes with the pipe diameter of 10 mm were investigated experimentally. The results showed that, with the change of the vapor-to-surface temperature difference, the condensation heat transfer coefficients revealed nonlinear characteristics with peak values under a wide variety of operating conditions. With the increasing pressure or velocity of the vapor, the heat transfer coefficients increased subsequently. The effect of vapor pressure or velocity on heat transfer coefficients reduced with the increasing ethanol mass fraction. It was noteworthy that, under low ethanol mass fractions (0.5–2%), the heat transfer coefficients augmented significantly, were about 5–8 times greater than that of pure steam. The comparison for different test blocks indicated that the condensation heat transfer coefficients for different pipe diameters were about the same value under the same operating condition. Significant heat transfer enhancement by Marangoni condensation could be achieved for full range of pipe diameter used in industrial condensers.  相似文献   

6.
This paper deals with the problem of using sensitivity analysis for fluid mechanics solutions to the constants of the standard k–ε method for 2D, incompressible and steady flows. The problem is described and analysed on the basis of a channel flow. Sensitivity coefficients of the following properties were determined: a pressure, two components of a velocity, a turbulence kinetic energy, a dissipation rate of turbulence kinetic energy and a turbulence dynamic viscosity. The calculated property values depend on five model constants that are parameters of the sensitivity analysis in this paper. Sensitivity coefficients are derivatives of the above properties, for individual parameters. In this paper these coefficients are determined using a finite difference approximation to the sensitivities coefficients. The author of this paper compares three models of the boundary layer with regard to the sensitivity of properties to the parameters. Irrespective of the boundary layer model used here, the analysis of sensitivity coefficients for the channel flow properties shows that the most sensitive property is the turbulence dissipation rate. Next properties of consequence, although of significantly smaller values of sensitivity coefficients, are the turbulence viscosity and the turbulence kinetic energy. All flow properties are mostly sensitive to the Cµ parameter. One of the final conclusions in this paper is that the analysis of sensitivity coefficient fields allows the reliable checking of results and indicates those areas most prone to calculation difficulties. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Extension and characterization of pressure-sensitive molecular film   总被引:1,自引:0,他引:1  
Pressure-sensitive paint (PSP) has the potential as a diagnostic tool for pressure measurement in high Knudsen number regime because it works as a so-called “molecular sensor”. However, there are few reports concerning application of PSP to micro-devices, because conventional PSPs are too thick owing to polymer binders. In our previous work, we adopted the Langmuir–Blodgett (LB) technique to fabricate the pressure-sensitive molecular film (PSMF) using Pd(II) Mesoporphyrin IX (PdMP), which has pressure sensitivity only in the low pressure range (below 130 Pa). In this study, aiming for pressure measurement under an atmospheric pressure condition, we have constructed four samples of PSMFs composed of Pt(II) Mesoporphyrin IX (PtMP), Pt(II) Mesoporphyrin IX dimethylester (PtMPDME), Pt(II) Protoporphyrin IX (PtPP) and Cu(II) Mesoporphyrin IX dimethylester (CuMPDME) as luminescent molecules. The pressure sensitivity of those PSMFs was measured, and it was clarified that the pressure sensitivity of PSMF-PtMP is the highest among the four samples. Moreover, the temperature dependency of PSMF-PtMP was investigated, and we found that the temperature dependency of PSMF is dominated not by the oxygen diffusion in the layer, but by non-radiative deactivation process of excited luminescent molecules.  相似文献   

8.
 An experimental and numerical investigation of heat transfer and fluid flow was conducted for corrugated-undulated plate heat exchanger configurations under transitional and weakly turbulent conditions. For a given geometry of the corrugated plates the geometrical characteristics of the undulated plates, the angle formed by the latter with the main flow direction, and the Reynolds number were made to vary. Distributions of the local heat transfer coefficient were obtained by using liquid-crystal thermography, and surface-averaged values were computed; friction coefficients were measured by wall pressure tappings. Overall heat transfer and pressure drop correlations were derived. Three-dimensional numerical simulations were conducted by a finite-volume method using a low-Reynolds number k–ɛ model under the assumption of fully developed flow. Computed flow fields provided otherwise inaccessible information on the flow patterns and the mechanisms of heat transfer enhancement. Received on 5 February 1999  相似文献   

9.
In the present work, the effects of pressure on the viscosity and flow stability of four commercial grade polyethylenes (PEs) have been studied: linear-low-density polyethylene copolymer, high-density polyethylene, metallocene polyethylenes with short-chain branches (mPE-SCB), and metallocene polyethylenes with long chain branching (mPE-LCB). The range of shear rates considered covers both stable and unstable flow regimes. “Enhanced exit-pressure” experiments have been performed attaining pressures of the order of 500×105 Pa at the die exit. The necessary experimental conditions have been clearly defined so that dissipative heating can be neglected and pressure effects isolated. The results obtained show an exponential increase in both shear and entrance-flow pressure drop with mean pressure when shear rate is fixed and as long as flow is stable. These pressure effects are described by two pressure coefficients, βS under shear and, βE under elongation, that are calculated using time–pressure superposition and that are independent of mean pressure and flow rate. For three out of four PE, pressure coefficient values can be considered equal under shear and under elongation. However, for the mPE-LCB, the pressure coefficient under elongation is found to be about 30% lower than under shear. Flow instabilities in the form of oscillating flows or of upstream instabilities appear at lower shear rates as mean pressure increases. Nevertheless, the critical shear stress at which they are triggered remains independent of mean pressure. Moreover, it is found that the βS values obtained for stable flows do not differ much from the values obtained during upstream instability regimes, and differ really from pressure effects observed under oscillating flow and slip conditions.  相似文献   

10.
Approximate analytic expressions for the local friction and heat transfer coefficients in a dusty laminar boundary layer are obtained and tested in the case of an incompressible carrier phase, power-law variation of the external gas flow velocity and small velocity and temperature phase disequilibrium. These expressions supplement the numerical analysis of the dusty boundary layer on a blunt body [1, 2] and the asymptotic calculation of the friction and heat transfer in a quasiequilibrium dusty gas boundary layer on a plate [3]. The combined effect of dustiness and pressure gradient on the friction and heat transfer coefficients is discussed. The results obtained can be used for the practical calculation of the friction and heat transfer in a quasiequilibrium dusty laminar boundary layer and for interpreting the corresponding experimental data. Tomsk. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 105–108, September–October, 1988.  相似文献   

11.
The transient heat transfer, fluid flow and pressure in a natural circulation loop have been studied under laminar flow conditions. Most studies of these systems have utilized a onedimensional approach which requires a priori specifications of the friction and the heat-transfer coefficients. In the present work the variation of the friction and heat-transfer coefficients are determined. Detailed pressure, temperature and velocity distributions are presented.  相似文献   

12.
The process of vortex formation in a cavity with inclined walls, which has a moderate aspect ratio, is experimentally studied, and the distribution of pressure coefficients is measured. The angle of inclination of the side walls ϕ is varied from 30 to 90°. It is found that the flow in the cavity becomes unstable in the range of inclination angles ϕ = 60–70°. Flow reconstruction occurs, which substantially alters the surface-temperature and static-pressure distributions. Large changes in these characteristics and their nonuniform distributions for these angles are observed across the cavity on its frontal wall and on the bottom. For small angles (ϕ = 30 and 45°), the pressure on the rear wall drastically increases, which leads to a small increase in pressure averaged over the entire cavity surface. __________ Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 68–76, September–October, 2006.  相似文献   

13.
A capillary rheometer equipped with a pressure chamber is used to measure the pressure-dependent viscosity of polymethylmethacrylate (PMMA), poly-α-methylstyrene-co-acrylonitrile (PαMSAN), and low-density polyethylene (LDPE). Data analysis schemes are discussed to obtain pressure coefficients at constant shear rate and at constant shear stress. It is shown that the constant shear stress pressure coefficients have the advantage of being shear stress independent for the three polymers. The constant shear rate pressure coefficients, on the other hand, turn out to depend on shear rate, which makes them less suitable for use, e.g., in process simulations. In addition to the commonly used superposition method, a direct calculation method for the pressure coefficients is tested. Values obtained from both methods are equivalent. However, the latter requires less experimental and calculational efforts. From the obtained pressure coefficients, it is clear that PMMA and PαMSAN have a very similar pressure dependence, while LDPE is less sensitive to pressure.  相似文献   

14.
An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re = 520 to Re = 6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re = 1054 and Re = 1318. The period of oscillations, wavelength and propagation speed of the Tollmien–Schlichting waves in the main channel were measured at two characteristic flow velocities, Re = 1580 and Re = 2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re = 1580 the dominant oscillation frequency was found to be around 26 Hz and at Re = 2370 the frequency distribution formed a band around 125 Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel. Received on 26 April 2000  相似文献   

15.
The current work focuses on the development and application of fast-responding polymer/ceramic pressure-sensitive paint (PSP) as an advanced surface pressure measurement technique for unsteady flow fields in large-scale wind tunnels. To demonstrate the unsteady PSP technique, the unsteady surface pressure distribution over a hemispherical dome placed in the United States Air Force Research Laboratory’s Trisonic Gasdynamics Facility (TGF) was studied by phase-locking to the characteristic frequency in the flow caused by an unsteady separated shear layer shed from the dome. The wind tunnel was operated at stagnation pressures of 23.92 and 71.84 kPa, with the test section flow at Mach 0.6. Under the two operating conditions, the predominant shear layer frequency was measured to be 272 and 400 Hz, respectively. The quasi-periodic shear layer frequency enabled a phase-averaged method to be employed for capturing the unsteady shock motion on the hemisphere. Unsteady pressure data resulting from this technique are shown to correlate well with measurements acquired by conventional measurement techniques. Measurement uncertainty in the phase-averaging technique will be discussed. To address measurement uncertainties from temperature sensitivity and model movement, a new implementation of an AC-coupled data representation is offered.  相似文献   

16.
Abstract

A spectral method is developed based on the primitive variables for the time-dependent solution of the flow and the temperature past a spherical droplet. Both Chebyshev and Legendre polynomials are used to expand the velocity, pressure, and temperature in the radial and angular directions, respectively. The fractional time-stepping method suggested by Orszag (Orszag et al., 1980) is used for solving the flow and the pressure fields. Euler backward differencing is used for the integration of the energy equation. The computed steady-state drag coefficients are compared to those found in the literature for Reynolds numbers in the range from 0.5 to 50 for both the continuous and the dispersed phase. The transient drag coefficients and Nusselt numbers are compared with our previous study using a stream function-vorticity formulation (Nguyen et al, 1993). The comparison indicates that the present model is capable of predicting the correct nature of the flow and heat transfer associated with a droplet.  相似文献   

17.
Two phase flow and heat transfer characteristics of a separate-type heat pipe have been studied experimentally and theoretically. The experimental apparatus have the same geometry for the evaporator and the condenser which consist of 5-tube-banks, with working temperature ranges of 80–125°C. The experimental working fluid is dual-distilled water with corrosion-resistant agents. Heat transfer coefficients for boiling and condensation along with heat flux and working temperature are measured at different filling ratio. According to the results of the experiments, the optimized filling ratio ranges from 16 to 36%. Fitted correlations of average heat transfer coefficients of the evaporator and Nusselt numbers of the condenser at the proposed filling ratio are obtained. Two phase flow characteristics of the evaporator and the condenser as well as their influence on heat transfer are described on the basis of simplified analysis. Reasons for the pulse-boiling process remain to be studied.  相似文献   

18.
IntroductionSensitivitycoefficientsexpressthechangerateofobservationdataonmodelparameters,andrepresentsensitivitydegreeofestimatedparametersonmodel.Itisimportanttocalculatetheminreservoirdescriptions.JacquardandJian[1]presentedthefirstprocedureofnumeric…  相似文献   

19.
The steady thermal field associated with the flow of gassy oil through a porous medium is investigated with allowance for the Joule-Thomson and degassing effects. A formula is obtained for estimating the temperature anomalies at the well bottom on oil inflow intervals which correspond to a bottom pressure lower than the saturation pressure. Ufa. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 113–116, January–February, 1994.  相似文献   

20.
This paper presents the heat transfer coefficients and the pressure drop measured during HFC-410A condensation inside a commercial brazed plate heat exchanger: the effects of saturation temperature, refrigerant mass flux and vapour super-heating are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature and great sensitivity to refrigerant mass flux and vapour super-heating. At low refrigerant mass flux (<20 kg/m2 s) the saturated vapour condensation heat transfer coefficients are not dependent on mass flux and are well predicted by Nusselt [W. Nusselt, Die oberflachenkondensation des wasserdampfes, Energy 60 (1916) 541–546, 569–575] analysis for vertical surface: the condensation process is gravity controlled. For higher refrigerant mass flux (>20 kg/m2s) the saturated vapour condensation heat transfer coefficients depend on mass flux and are well predicted by Akers et al. [W.W. Akers, H.A. Deans, O.K. Crosser, Condensing heat transfer within horizontal tubes, Chem. Eng. Prog. Symp. Series 55 (1959) 171–176] equation: forced convection condensation occurs. In the forced convection condensation region the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8–10% higher than those of saturated vapour and are well predicted by Webb [R.L. Webb, Convective condensation of superheated vapor, ASME J. Heat Transfer 120 (1998) 418–421] model. A simple linear equation based on the kinetic energy per unit volume of the refrigerant flow is proposed for the computation of the frictional pressure drop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号