首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The infrared (IR) spectrum of PD3 has been recorded in the 1580–1800 cm−1 range at a resolution of 0.0027 cm−1. About 2400 rovibrational transitions with J=K22 have been measured and assigned to the ν1 (A1) and ν3 (E) stretching fundamentals. These include 506 “perturbation-allowed” transitions with selection rules Δ(kl)=±3. Splittings of the K′′=3 lines have been observed. Effects of strong perturbations are evident in the spectrum. Therefore the rovibrational Hamiltonian adopted for the analysis explicitly takes into account the Coriolis and k-type interactions between the v1=1 and v3=1 states, and includes also several essential resonances within these states. The rotational structure in the v1=1 and v3=1 vibrational states up to J=K=18 was reproduced by fitting simultaneously all experimental data. Thirty-four parameters reproduced 1950 transitions retained in the final cycle with a standard deviation of the fit equal to 4.9 × 10−4 cm−1 (about the precision of the experimental measurements).  相似文献   

2.
To support planetary studies of the Venus atmosphere, we measured line strengths of the 2v3, v1+2v2+v3, and 4v2+v3 bands of the primary isotopologue of carbonyl sulfide (16O12C32S), whose band centers are located at 4101.387, 3937.427, and 4141.212 cm−1, respectively. For this, infrared absorption spectra in normal carbonyl sulfide (OCS) sample gas were recorded at an unapodized resolution of 0.0033 cm−1 at ambient room temperatures using a Bruker Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory. The FTS instrumental line shape (ILS) function was investigated, which revealed no significant instrumental line broadening or distortions. Various custom-made short cells and a multi-pass White cell were employed to achieve optical densities sufficient to observe the strong 2v3 and the weaker bands in the region. Gas sample impurities and the isotopic abundances were determined from mass spectrum analysis. Line strengths were retrieved spectrum by spectrum using a non-linear curve fitting algorithm adopting a standard Voigt line profile, from which Herman–Wallis factors were derived for the three bands. The band strengths of 2v3, v1+2v2+v3, and 4v2+v3 of 16O12C32S (normalized at 100% of isotopologue) are observed to be 6.315(13)×10−19, 1.570(2)×10−20, and 7.949(20)×10−21 cm−1/molecule cm−2, respectively, at 296 K. These results are compared with earlier measurements and the HITRAN 2004 database.  相似文献   

3.
Thev 2(A1) andv 5(E) fundamental vibration-rotation bands of12CH3F have been recorded under high resolution (0.015 to 0.020 cm–1) in the spectral range of 1460 cm–1. About 1100 transitions have been assigned. The Coriolis interaction between v2=1 and v5=1, and the l(2,-1) interaction in v5=1 have been rigorously treated. Sixteen molecular constants have been determined from a least squares analysis. They reproduce the observed data with an overall standard deviation of 0.0037 cm–1.  相似文献   

4.
More than two thousand Stark resonances of the ν4 and 2ν2 band transitions of 14NH3 and 15NH3 were observed at Doppler-limited resolution with a CO laser. Fourier transform infrared spectroscopy on 15NH3 is also carried out. Thirty-six new microwave transitions including seven perturbation-enhanced transitions are observed in the v4 = 1 excited vibrational state of 14NH3 and 15NH3. Accuracies of all available spectroscopic data on the v4 = 1 and the v2 = 2 states are evaluated and analyses of the vibration-rotation spectra are performed. The Coriolis interaction between the closely lying v4 = 1 a (antisymmetric level) and v2 = 2 s (symmetric level) states is explicitly included in the analysis. Smaller Coriolis interactions between the v4 = 1 a and the v2 = 1 s states and between the v2 = 2 s and the v2 = v4 = 1 a states (i.e., (v1, v2, v3, v4) = (0 1 00 11)) are also taken into consideration. The accuracy in determination of the principal molecular constants is 10?6. The parameters thus obtained reproduce the frequencies of the vibration-rotation transitions and inversion transitions within the accuracy of 0.0024 cm?1.  相似文献   

5.
Quantitative intensity measurements have been made for the oxygen γ-band at 6280 Å. Intensities for 19 individual rotational lines of the PP and PQ branches and the intensity of the combined RR and RQ branches are reported. The band intensity, Svv, is found to be 1.52±0.07 cm-1km-1atm-1 (STP).  相似文献   

6.
The 2ν3 overtone (A1E) and the ν1 + ν3 (E) combination bands of the oblate symmetric top 14NF3 were studied by FTIR spectroscopy with a resolution of 2.5 × 10−3 cm−1. Nearly 500 lines up to Kmax/Jmax = 30/43 were observed for the weak A1 component reaching the v3 = 20 substate (1803.1302 cm−1), the majority of which corresponded to reinforced K = 3p-type transitions. For the strong E component reaching the v3 = 2±2 substate (1810.4239 cm−1), about 3550 transitions were assigned up to Kmax/Jmax = 65/69, favoring a clear observation of the ℓ(4, −2) and ℓ(4, 4) splittings within the kℓ = −2 and +4 sublevels, respectively. The two v3 = 2 substates are linked by the ℓ(2, 2)- and ℓ(2, −1)-type interactions, providing severe crossings, respectively, at K′ = 6 and near K′ = 24 on the v3 = 2+2 side. A model working in the D-reduction and including all these ℓ-type interactions could reproduce together 3695 nonzero weighted experimental data (NZW) through 33 free parameters with a standard deviation of σ = 0.357 × 10−3  cm−1. As for the ν1 + ν3 (E) combination band, about 3690 lines were assigned up to Kmax/Jmax = 45/55. Its v1 = v3 = 1 upper state (1931.577 5 cm−1) was treated using the same model recently applied to the v3 = 1 (E, 907.5413 cm−1) state. It yielded 21 free parameters through 3282 NZW experimental data, adjusted with σ = 0.344 × 10−3  cm−1 in the D-reduction. For the two excited states, the small and unobserved ℓ(0, 6) interaction was tested as useless. To confirm the adequacy of the vibrationally isolated models used, some other reductions of the Hamiltonian were tried. For the v3 = 2 state, the D-, L-, and LD-reductions led to similar σ’s, while the Q one was not successful. For the v1 = v3 = 1 state, the D- and Q-reductions gave comparable σ’s, while the QD-reduction was not as good. The corresponding unitary equivalence relations are generally more nicely fulfilled for the v3 = 2 state than for the v1 = v3 = 1 state. The three derivable anharmonicity constants in cm−1 are x33 = −4.1528, g33 = +1.8235 and x13 = −7.9652.  相似文献   

7.
By tuning a high pressure CO2 laser (HPL) around strong ammonia lines nearly coincident with CO2 lines an of-fresonant absorption is observed which can be confirmed by the superfluorescent MIR emission. This effect is related to a two frequency v1, v3 HPL emission in the regime of moderate pulling. Around a strong absorption line a mixed v4=2v1–v3 frequency is produced that is strongly absorbed  相似文献   

8.
Using Fourier-transform spectra (Bruker IFS 120 HR, resolution ≈0.004 cm−1) of NH3 in nine branches of the ν2, 2ν2 and ν4 bands, self-broadening and self-shift as well as self-mixing coefficients have been determined at room temperature (T=295 K) for more than 350 rovibrational lines located in the spectral range 1000–1800 cm−1. A non-linear least-squares multispectrum fitting procedure, including line mixing effects, has been used to retrieve successively the line parameters from 11 experimental spectra recorded at different pressures of pure NH3. The accuracies of self-broadening coefficients are estimated to be better than 2% for most lines. The mean accuracies of line-mixing and line-shift data are estimated to be about 15% and 25%, respectively. The results are compared with previous measurements and with values calculated using a semiclassical model based upon the Robert–Bonamy formalism that reproduces rather well the systematic experimental J and K quantum number dependencies of the self-broadening coefficients.The results concerning line mixing demonstrate a large amount of coupling between the symmetric and asymmetric components of inversion doublets mainly in the ν4 band. The line mixing parameters are both positive and negative. More than two thirds of the lines studied here have a positive shift coefficient. However, for most of them the shift coefficients are negative in the 2ν2 band. They are positive for the R branch of the ν2 band and for the PR and RP branches of the ν4 band. For the other branches they are both positive and negative. Some components of inversion doublets illustrate a correlation between line mixing and shift phenomena demonstrated by a quadratic pressure dependence of line position.  相似文献   

9.
The overtone band 2ν08 of CH3CN around 720 cm−1 has been measured on a Bruker Fourier transform spectrometer at a resolution of 0.003 cm−1. Only the parallel band was observed, but due to the l(2, 2) resonance, ΔK = −2 lines leading to the v8 = 2, l8 = −2 levels with K = 1-3 could be seen. More information for the l8 = ±2 component of the vibrational state v8 = 2 was evaluated from the hot band 2ν±28 - ν±18. Altogether more than 1000 lines were assigned. In the fit pure rotational lines from literature were also combined. Among the results the anomalous A0 - A′ values 4.6722(13) × 10−3 cm−1 for the 2ν08 band and 7.0324(32) × 10−3 cm−1 for the 2ν±28 band are striking.  相似文献   

10.
Eleven new CW far infrared (FIR) laser lines have been observed in the 600 m–1200 m range from the CF2Cl2 (Fluorocarbon 12) molecule optically pumped by a CO2 laser. A 510–4–10–3 accuracy is achieved in the measurement of the FIR wavelengths.The frequency offset between the CO2 pump center and the absorption line centers are measured using the transferred Lamb dip technique. Owing to a recent spectroscopic study of the CF2 35Cl2 molecule three lines may be assigned with great confidence as rotational transitions in thev 6 vibrational band 923 cm–1 of this main isotope.  相似文献   

11.
First measurements of line intensities for ν1 and ν3 bands of D232S are reported. About 300 intensities of D232S vibration–rotation lines were obtained from experimental high-resolution spectra recorded in the 1810–2051 cm−1 region with the Fourier Transform Spectrometer built in Reims. Empirical values of transition moment parameters for ν1 and ν3 bands of D232S were determined for the first time using a least-square fit to the observed intensities. Experimental D232S intensities were compared with recent global variational predictions [Vl.G. Tyuterev, L. Régalia-Jarlot, D.W. Schwenke, S.A. Tashkun, Y.G. Borkov, C. R. Phys. 5 (2004) 189–199] computed from isotopically invariant potential and dipole moment functions of the hydrogen sulphide molecule. Average discrepancy between these calculations and our observed data was 0.03 cm−1 for line positions of this spectral range. The discrepancy between these calculations and our measurements for the sum of line intensities was 5.5% and 3.5% for the ν1 and ν3 bands, correspondingly.  相似文献   

12.
The ν3±1 perpendicular band of 14NF3 ( cm−1) has been studied with a resolution of 2.5 × 10−3 cm−1, and 3682 infrared (IR) transitions (Jmax=55, Kmax=45) have been assigned. These transitions were complemented by 183 millimeterwave (MMW) rotational lines (Jmax=25, Kmax=19) in the 150–550 GHz region (precision 50–100 kHz). The kl=+1 level reveals a strong A1/A2 splitting due to the l(2,2) rotational interaction (q=−4.05 × 10−3 cm−1) while the kl=−2 and +4 levels exhibit small A1/A2 splittings due to l(2,−4) and l(0,6) rotational interactions. All these splittings were observed by both experimental methods. Assuming the v3=1 vibrational state as isolated, a Hamiltonian model of interactions in the D reduction, with l(2,−1) rotational interaction (r=−1.96 × 10−4 cm−1) added, accounted for the observations. A set of 26 molecular constants reproduced the IR observations with σIR=0.175 × 10−3 cm−1 and the MMW data with σMMW=134 kHz. The Q reduction was also performed and found of comparable quality while the QD reduction behaved poorly. This may be explained by a predicted Coriolis interaction between v3=1 and v1=1 (A1, 1032.001 cm−1) which induces a slow convergence of the Hamiltonian in the QD reduction but has no major influence on the other reductions. The experimental equilibrium structure could be calculated as: re(N–F)=1.3676 Å and (FNF)=101.84°.  相似文献   

13.
Inversion frequencies of 15NH3 in the ground vibrational state are measured to an accuracy of ±0.01 MHz. The observed 115 lines, up to J = 18, including 54 new lines, are analyzed with 15-term Costain's exponential expression. The parameters reproduce the observed frequencies with a standard deviation of 0.053 MHz. Coupling constants of higher order vibration-rotation interaction for K = 3 and K = 6 levels are included in the analysis.  相似文献   

14.
The ν3 fundamental band of the formyl radical, HCO, in the 5.3-μm region has been observed at high resolution (0.0025 cm−1, unapodized) using a Fourier transform spectrometer. The HCO radicals were formed by the reaction of F atoms with H2CO in a fast-flow multiple-traversal absorption cell. A total of 298 lines were measured with an accuracy of about 0.0004 cm−1 and assigned to transitions with values of the rotational quantum numbers N and Ka up to 20 and 5, respectively. These data greatly improve the knowledge of the HCO ν3 line positions and (v1v2v3) = (001) vibrational state molecular parameters as compared to earlier laser magnetic resonance studies of this band, especially for higher values of N. The ν1 fundamental band of HCO was also observed and an analysis of these data agrees well with the recent study of Dane et al. [J. Chem. Phys. 88, 2121–2128 (1988)].  相似文献   

15.
A new highly sensitive far infrared optically pumped laser magnetic resonance (LMR) spectrometer has facilitated the observation of 21 transitions in O2 at 699 μm (428.6285 GHz). All of these transitions involve N = 3 ← 1 of the oxygen molecule in its electronic ground state, X3Σg. Of these 21 lines, 10 are due to the 16O2, v = 0; 5 are due to the 16O2, v = 1; 5 are due to the 16O18O, v = 0; and 1 set of 6 hyperfine components is due to the 16O17O, v = 0. From the intensity of the observed lines the sensitivity limit of this LMR spectrometer is found to be about 10−9 cm−1 at this frequency with a 1-sec time constant.  相似文献   

16.
Self-broadening coefficients of NH3 in the ν2 and ν4 bands and absolute line intensities in the ν2 band have been measured at room temperature for some selected lines in the P- and R-branches. Using a Fourier transform spectrometer, line intensities and collisional widths were obtained by fitting Voigt profiles to the measured shapes of the lines. The results of self-broadening coefficients are in reasonable agreement with calculated linewidths using a semiclassical model which reproduce rather well the systematic experimental J and K quantum numbers dependencies. Satisfactory agreement was also obtained for line intensities with previous measurements in the ν2 band. From the intensity measurements, we have determined effective transition dipole moments as well as Herman–Wallis parameters for the ν2 band.  相似文献   

17.
We report a rovibrational analysis of the ν4 and ν6 fundamentals and the 2ν5 overtone of HNSO from high-resolution Fourier transform infrared spectra. The ν6 band (out-of-plane bend) centred at 757.5 cm−1 is c-type. The ν4 band (HNS bend) centred at 905.9 cm−1 is predominantly a-type with a very weak b-type component (). Numerous global perturbations and localized avoided crossings affecting the v4 = 1 rotational levels were successfully treated by inclusion of Fermi and c-axis Coriolis resonance terms between v4 = 1 and v5 = 2, and a b-axis Coriolis resonance term between v4 = 1 and v6 = 1. The latter term gives rise to an avoided crossing with an extraordinary ΔKa = 5 selection rule. The Fermi resonance between v4 = 1 and v5 = 2 gives rise to strong mixing of their rotational wavefunctions in the vicinity of Ka = 18. The resultant borrowing of intensity made it possible for 2ν5 transitions in the range Ka = 16–19 to be assigned and included in a global rovibrational treatment of all three band systems.  相似文献   

18.
This paper reports our new observation of the , 13Δg (v = 2–4), and 23Πg (v = 2–8) states of 6Li7Li by continuous wave perturbation facilitated optical–optical double resonance spectroscopy. Combining our new experimental term values of 6Li7Li with the available experimental data of 6Li2 and 7Li2, molecular constants and potential energy curves by Rydberg–Klein–Rees and direct-potential-fit techniques have been determined. Born-Oppenheimer breakdown parameters of the Li2 13Δg and 23Πg states are calculated.  相似文献   

19.
Overtone and combination bands were observed between 1000 and 5000 cm–1 for CH4 molecules in several crystal fields: solid phases I and II, and diluted alloys with Kr. In the anisotropic field of phase II, a full (rotation/libration)-vibration spectrum was observed in the combination bands 2v 4,v 2+v 4, andv 3+v 4. Here, all lines could be assigned to transitions of either D2d or Oh molecules. The structure ofv 3v 4,v 2+2v 4,v 1+v 4,v 2+v 3 and 3v 4 bands could not be resolved. In phase I, all spectra show the characteristic features of rotational diffusion, while in a Kr matrix a rotovibrational structure could again be observed in the overtone and combination bands.  相似文献   

20.
In this study we report the first measurements of the pressure-induced lineshift coefficients due to Ar, He, O2, and N2 for 22 rovibrational lines from P(53) to R(53), belonging to the 2ν3 band of 16O12C32S at 4100 cm−1. The lineshift results were obtained from the simultaneous record of the pressure-broadened and pure low-pressure OCS lines, using a tunable difference-frequency laser spectrometer. For four lines of the 2ν3 band we also report Ar-, He-, O2-, and N2-broadening coefficients by fitting Voigt and Rautian profiles to the measured shapes of these lines. The broadening and shift coefficients are compared to the results of theoretical calculations based on the semiclassical Robert–Bonamy formalism and two different isotropic and anisotropic intermolecular potentials. For OCS–Ar we also consider the Smith–Giraud–Cooper model including all orders of the interaction within the peaking approximation. In all cases, the calculated broadening coefficients are in reasonable agreement with the experimental data. By considering adjustable parameters for the vibrational dependence of the isotropic potential, the general trends of the lineshifts with J can be roughly predicted, except at low J values where an asymmetry behavior for P and R branches is generally observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号