首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photocatalytic hydrogen evolution with a ruthenium metal catalyst under basic conditions (pH 10) has been made possible for the first time by using 2-phenyl-4-(1-naphthyl)quinolinium ion (QuPh(+)-NA), dihydronicotinamide adenine dinucleotide (NADH), and Ru nanoparticles (RuNPs) as the photocatalyst, electron donor, and hydrogen-evolution catalyst, respectively. The catalytic reactivity of RuNPs was virtually the same as that of commercially available PtNPs. Nanosecond laser flash photolysis measurements were performed to examine the photodynamics of QuPh(+)-NA in the presence of NADH. Upon photoexcitation of QuPh(+)-NA, the electron-transfer state of QuPh(+)-NA (QuPh(?)-NA(?+)) is produced, followed by formation of the π-dimer radical cation with QuPh(+)-NA, [(QuPh(?)-NA(?+))(QuPh(+)-NA)]. Electron transfer from NADH to the π-dimer radical cation leads to the production of 2 equiv of QuPh(?)-NA via deprotonation of NADH(?+) and subsequent electron transfer from NAD(?) to QuPh(+)-NA. Electron transfer from the photogenerated QuPh(?)-NA to RuNPs results in hydrogen evolution even under basic conditions. The rate of electron transfer from QuPh(?)-NA to RuNPs is much higher than the rate of hydrogen evolution. The effect of the size of the RuNPs on the catalytic reactivity for hydrogen evolution was also examined by using size-controlled RuNPs. RuNPs with a size of 4.1 nm exhibited the highest hydrogen-evolution rate normalized by the weight of RuNPs.  相似文献   

2.
利用醇脱氢酶(ADH)催化乙醇与氧化型烟酰胺腺嘌呤二核苷酸(NAD)反应的原理,通过测定还原型烟酰胺腺嘌呤二核苷酸(NADH)荧光强度的变化率得出其酶促反应速度,对应乙醇浓度而制得标准曲线,试样中乙醇含量由标准曲线求得,检出限为4.0×10-6mol/L。考察了试剂用量、pH、共存组分对测定的影响。该方法简便、快速、准确。  相似文献   

3.
Regioselective hydrogenation of the oxidized form of β-nicotinamide adenine dinucleotide (NAD(+)) to the reduced form (NADH) with hydrogen (H(2)) has successfully been achieved in the presence of a catalytic amount of a [C,N] cyclometalated organoiridium complex [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(H(2)O)](2) SO(4) [1](2)·SO(4) under an atmospheric pressure of H(2) at room temperature in weakly basic water. The structure of the corresponding benzoate complex Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))-benzoate-κC(3))(H(2)O) 2 has been revealed by X-ray single-crystal structure analysis. The corresponding iridium hydride complex formed under an atmospheric pressure of H(2) undergoes the 1,4-selective hydrogenation of NAD(+) to form 1,4-NADH. On the other hand, in weakly acidic water the complex 1 was found to catalyze the hydrogen evolution from NADH to produce NAD(+) without photoirradiation at room temperature. NAD(+) exhibited an inhibitory behavior in both catalytic hydrogenation of NAD(+) with H(2) and H(2) evolution from NADH due to the binding of NAD(+) to the catalyst. The overall catalytic mechanism of interconversion between NADH and NAD(+) accompanied by generation and consumption of H(2) was revealed on the basis of the kinetic analysis and detection of the catalytic intermediates.  相似文献   

4.
JA Kim  S Kim  J Lee  JO Baeg  J Kim 《Inorganic chemistry》2012,51(15):8057-8063
In this study, a visible-light-driven photocatalytic system for the generation of dihydronicotinamide adenine dinucleotide (NADH) from aqueous protons was examined using cobaloxime as a catalyst, eosin as a photosensitizer, and triethanolamine as a sacrificial electron donor. Irradiation of a reaction solution containing cobaloxime, eosin, and triethanolamine (TEOA) converted NAD(+) to NADH with a yield of 36% in a phosphate buffer. The reaction rates for the production of NADH were dependent on the concentrations of the catalyst, NAD(+), and TEOA. Introduction of an electron-donating or -withdrawing substituent in the para position of the pyridine changed the rate constant and affected the conversion efficiency. The rates obtained by the different substituents were linearly correlated with the Hammett coefficients of the introduced substituents. Last, reduction of CO(2) was carried out in the presence of formate dehydrogenase using NADH photochemically generated using the cobaloxime/eosin/TEOA system.  相似文献   

5.
硫堇-甲苯二异氰酸酯衍生物修饰的玻碳基乙醇传感器的研究俞爱民,韩吉林,杨可盛,陈洪渊(南京大学化学系,南京,210093)关键词硫堇-TDI衍生物,NAD~+,ADH,乙醇传感器经典的测定乙醇含量的方法有气相色谱法[1]、分光光度法[2].近年来,随?..  相似文献   

6.
用紫外-可见吸收光谱、X射线衍射、荧光光谱和衰减全反射傅里叶变换红外(ATR-FTIR)光谱等方法,研究了烟酰胺腺嘌呤二核苷酸(NAD+)在纳米α-Al2O3粒子上的吸附行为。 实验结果显示,NAD+的吸附量受pH值和离子强度影响较大,说明NAD+主要通过静电作用吸附在纳米α-Al2O3粒子上。 采用ATR-FTIR光谱分析了不同pH值溶液中及被吸附的NAD+,发现吸附后的NAD+与溶液中NAD+ 的ATR-FTIR光谱相似,但磷酸根的吸收峰向高波数位移,说明磷酸根参与了表面静电作用。 吸附过程符合Langmuir和Freundlich等温式。 荧光实验结果显示,随着吸附剂α-Al2O3用量的变化,NAD+构象也发生变化。  相似文献   

7.
In this study the endogenous fluorescence signal attributed to reduced nicotinamide adenine dinucleotide (NADH) has been measured in response to photodynamic therapy (PDT)-induced damage. Measurements on cells in vitro have shown that NADH fluorescence decreased relative to that of controls after treatment with a toxic dose of PDT, as measured within 30 min after treatment. Similarly, assays of cell viability indicated that mitochondrial function was reduced immediately after treatment in proportion to the dose delivered, and the proportion of this dose response did not degrade further over 24 h. Measurements in vivo were used to monitor the fluorescence emission spectrum and the excited state lifetime of NADH in PDT-treated tissue. The NADH signal was defined as the ratio of the integrated fluorescence intensity of the 450 +/- 25 nm emission band relative to the fluorescence intensity integrated over the entire 400-600 nm range of collection. Measurements in murine muscle tissue indicated a 22% reduction in the fluorescence signal immediately after treatment with verteporfin-based PDT, using a dose of 2 mg/kg injected 15 min before a 48 J/cm2 light dose at 690 nm. Control animals without photosensitizer injection had no significant change in the fluorescence signal from laser irradiation at the same doses. This signal was monotonically correlated to the deposited dose used here and could provide a direct dosimetric measure of PDT-induced cellular death in the tissue being treated.  相似文献   

8.
This study was designed to examine if platinum nanoparticles have an activity similar to mitochondrial complex I, NADH:ubiquinone oxidoreductase. Platinum nanoparticles were prepared by a citrate reduction of H(2)PtCl(6) and protected by citrate itself and pectin (CP-Pt). Time- and dose-dependent decreases in NADH and a time-dependent increase in NAD(+) were observed in the presence of 50muM CP-Pt; these observations were made using a spectrophotometric method in which the maximum absorption spectra at 340 and 260nm were used for NADH and NAD(+), respectively. The required platinum concentration in CP-Pt to achieve a 50% oxidation of NADH for 3h was approximately 20muM, and this NADH oxidation did not require oxygen as an electron acceptor. We also verified NAD(+) formation using an NAD(+)/NADH quantification kit. The absorption peak shift from 278 to 284nm of 2,3-dimethoxy-5-methyl-6-(3-methyl-2-butenyl)-1,4-benzoquinone (CoQ(1)) was observed by incubating CoQ(1) with CP-Pt in an aqueous buffer. A further analysis with HPLC revealed the reduction of CoQ(1) to CoQ(1)H(2) by CP-Pt. As a whole, platinum nanoparticles have an NADH:ubiquinone oxidoreductase-like activity. This suggests that platinum nanoparticles are a potential medicinal substance for oxidative stress diseases with suppressed mitochondrial complex I.  相似文献   

9.
Efficient DNA cleaving-activity is observed by UVA irradiation of an O(2)-saturated aqueous solution of NADH (beta-nicotinamide adenine dinucleotide, reduced form). No DNA cleavage has been observed without NADH under otherwise the same experimental conditions. In the presence of NADH, energy transfer from the triplet excited state of NADH ((3)NADH*) to O(2) occurs to produce singlet oxygen ((1)O(2)) that is detected by the phosphorescence emission at 1270 nm. No quenching of (1)O(2) by NADH was observed as indicated by no change in the intensity of phosphorescence emission of (1)O(2) at 1270 nm in the presence of various concentrations of NADH. In addition to the energy transfer, photoinduced electron transfer from (3)NADH* to O(2) occurs to produce NADH(*+) and O(2)(*-), both of which was observed by ESR. The quantum yield of the photochemical oxidation of NADH with O(2) increases linearly with increasing concentration of NADH but decreases with increasing the light intensity absorbed by NADH. Such unusual dependence of the quantum yield on concentration of NADH and the light intensity absorbed by NADH indicates that the photochemical oxidation of NADH with O(2) proceeds via radical chain processes. The O(2)(*-) produced in the photoinduced electron transfer is in the protonation equilibrium with HO(2)(*), which acts as a chain carrier for the radical chain oxidation of NADH with O(2) to produce NAD(+) and H(2)O(2), leading to the DNA cleavage.  相似文献   

10.
The oxidation of 1, 4-nicotinamide adenine dinucleotide (NADH) to β-nicotinamide adenine dinucleotide (NAD(+)) coupled with converting of pyruvic acid (PA) to lactate catalyzed by lactate dehydrogenase (LDH), NADH+PA+H(+)?LDHNAD(+)+Lactate, was widely adopted to quantify the cell's death, membrane infiltration and proliferation induced by potential toxins. The differential pulse voltammetry (DPV) cathodic signal of NAD(+) at a hanging mercury drop electrode (HMDE) showed LDH activity decreased with the elevating dosages of and the pre-contact time (t(c)) with multi-walled carbon nanotubes (MWCNTs). Comparison of kinetic rate constant of above enzymatic reaction (ER) was able to sensitively assay the adverse influence of MWCNTs. Toxic concentration of altering relative LDH activity by 50% (TC(50)) of MWCNTs was derived to be 40mg/L. TC(50) values indicated a decrease toxicity order Al (III)>MWCNTs>nano-Al(13)>50nm-Al(2)O(3)≥1000nm-Al(2)O(3). The negatively charged surfaces of these nanoparticles (NPs) might be a main cause for the decrement of LDH activity. This decrement was capable to result in the underestimation of the toxicity of NPs in classic LDH assays. This observation would highlight to settle down contradictory medium dependent toxicity of MWCNTs among the literature.  相似文献   

11.
Nicotinamide coenzymes nicotinamide adenine dinucleotide (NAD(+)) and nicotinamide adenine dinucleotide phosphate (NADP(+)) were electrochemically reduced to NADH and NADPH, respectively. As direct reduction of nicotinamide coenzymes leads to inactive by-products, an indirect method using (pentamethylcyclopentadienyl-2,2'-bipyridine aqua) rhodium (III) as the mediator, was applied. A phosphate buffer solution, pH 8, with 1-10 mM NAD(P)(+) and 2.5-200 microM mediator, was pumped through a glassy carbon packed bed cathode. Virtually all the NAD(P)(+) was reduced to NAD(P)H in the cell. No sign of mediator loss due to side-reactions was detected though the mediator molecules shuttled hundreds of times between the oxidised and the reduced form. Adsorption of mediator molecules on the surface of the carbon cathode was found to be important for the reduction process. Due to strong adsorption, only minute amounts of mediator were consumed.  相似文献   

12.
Sustained release of lactate dehydrogenase (LDH, EC 1.1.1.27) from electrospun poly (vinyl alcohol) (PVA) nanofibers was successfully achieved using the coaxial electrospinning technique. The presence of the encapsulated enzyme in the nanofibers was confirmed by infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) was used to evaluate the morphology and diameter of the nanofibers. The conversion of lactate to pyruvate by LDH coupling with the reduction of the cofactor nicotinamide adenine dinucleotide (NAD+) to dihydronicotinamide adenine dinucleotide (NADH) produces an increment in the ultraviolet absorption (UV) at 340 nm. This change in the UV absorbance was used to follow the release kinetic of LDH from the PVA nanofibers and also as a measure to evaluate the residual enzymatic catalytic function. Most of the encapsulated LDH enzyme was released in a sustained manner from the PVA nanofibers within a period of 1 month.  相似文献   

13.
The interactive behavior of flavin adenine dinucleotide (FAD) with a bare glassy carbon electrode (GCE) and a Ru-modified GCE was investigated. The reduction of FAD at a GCE/ruthenium-modified GCE surface is a quasi-reversible, surface-controlled process, and our data implied that the attachment of FAD onto the surface is caused by nonspecific adsorption instead of covalent linkage, in which the adenine ring of FAD adopts a flat orientation on the GCE surface in neutral and dilute solutions in order to maximize the pi-pi stacking with the carbon surface and reorients to a perpendicular orientation as the surface gets more crowded. FAD desorption during the exchange with nicotinamide adenine dinucleotide (NAD+) is one order of magnitude slower than desorption in the absence of NAD+, which indicates a strong interaction between FAD and NAD+. General knowledge of the interactive behavior of NAD+ on a FAD-adsorbed GCE provides useful information for the design of a modified electrode surface for the generation of NADH from NAD+.  相似文献   

14.
An ultrasensitive fluorescence assay for nicotinamide adenine dinucleotide (NAD(+)) was developed by target-triggered ligation-rolling circle amplification (L-RCA). This novel approach can detect as low as 1 pM NAD(+), much lower than those of previously reported biosensors, and exhibits high discrimination ability even against 200 times excess of NAD(+) analogs.  相似文献   

15.
A simple label-free fluorescent sensing scheme for sensitive and selective detection of nicotinamide adenine dinucleotide (NAD(+)) has been developed based on DNA ligation reaction with ligand-responsive quadruplex formation. This approach can detect 0.5 nM NAD(+) with high selectivity against other NAD(+) analogs.  相似文献   

16.
ZnO nanoparticles have been synthesized by using biodegradable natural biopolymer viz. Gum Tragacanth. This single step approach is very cost effective and reproducible. The reaction time and concentration of precursor zinc acetate play a major role in the nature and growth of ZnO nanoparticles. ZnO nanoparticles were characterized by X-ray diffraction, SEM, FTIR, EDAX, UV-visible spectroscopy and TEM. ZnO nanoparticles with 20-30 nm in diameter and hexagonal morphology were found; dispersed uniformly. Raman spectrum shows the mode E2 high at 437 cm?1 that is related to the vibration of wurtzite Zn-O bond in crystal structure of ZnO. The space between adjacent lattice fringes is ~ sharp 2.42 Å. UV-visible absorption spectrum shows the sharp absorption band at 308 nm assigned to the intrinsic transition from valance band to conduction band. The ZnO nanoparticles display superior catalytic activity of conversion of aldehyde to acid as compared to bulk-ZnO material, because of high surface area of ZnO nanoparticles. A trace amount of ZnO nanoparticles catalyst required for organic conversion. The ZnO nanoparticles as catalyst are highly stable, recyclable and efficient in its activity.  相似文献   

17.
酶法测定乳酸   总被引:4,自引:0,他引:4  
利用乳酸在氧化型烟酰胺腺嘌呤二核苷酸(NAD)存在的条件下,由乳酸脱氢酶(L-LDH)催化生成丙酮酸和还原型烟酰胺腺嘌呤二核苷酸(NADH)。通过测定NADH吸光度的变化率可得出乳酸的酶促反应速度,并制得标准曲线。样品中的乳酸可由标准曲线求得。讨论了试剂用量、pH、温度和共存离子对测定的影响。  相似文献   

18.
N-(3-Aminopropyl)-N'-methyl-4,4'-bipyridinium is coupled to tiopronin-capped Au nanoparticles (diameter ca. 2 nm) to yield methyl(aminopropyl)viologen-functionalized Au nanoparticles (MPAV(2+)-Au nanoparticles). In situ electrochemical surface plasmon resonance (SPR) measurements are used to follow the electrochemical deposition of the bipyridinium radical cation modified Au nanoparticles on an Au-coated glass surface and the reoxidation and dissolution of the bipyridinium radical cation film. The MPAV(2+)-functionalized Au nanoparticles are also employed for the amplified SPR detection of NAD(+) and NADH cofactors. By SPR monitoring the partial biocatalyzed dissolution of the bipyridinium radical cation film in the presence of diaphorase (DP) NAD(+) is detected in the concentration range of 1x10(-4) M to 2x10(-3) M. Similarly, the diaphorase-mediated formation of the bipyridinium radical cation film on the Au-coated glass surface by the reduction of the MPAV(2+)-functionalized Au nanoparticles by NADH is used for the amplified SPR detection of NADH in the concentration range of 1x10(-4) M to 1x10(-3) M.  相似文献   

19.
Chemiluminescent reactions induced by gold nanoparticles   总被引:2,自引:0,他引:2  
The reaction of gold nanoparticles with a potassium periodate-sodium hydroxide-carbonate system undergoes chemiluminescence with three emission bands at 380-390, 430-450, and 490-500 nm, respectively. It was found that the light intensity increased linearly with the concentration of the gold nanoparticles, and the CL intensity increased dramatically when the citrate ions on the nanoparticle surface were replaced by SCN(-). The shape, size, and oxidation state of gold nanoparticles after the chemiluminescent reaction were characterized by UV-visible absorption spectrometry, transmission electron microscopy (TEM), and X-ray photoelectron spectrometry (XPS). Gold nanoparticles are supposed to function as a nanosized platform for the observed chemiluminescent reactions. A chemiluminescent mechanism has been proposed in which the interaction between free CO(3)(*-) and O(2)(*-) radicals generated by a KIO(4)-NaOH-Na(2)CO(3) system and gold nanoparticles results in the formation of emissive intermediate gold(I) complexes, carbon dioxide dimers, and singlet oxygen molecular pairs on the surface of the gold nanoparticles. This work is not only of great importance for gaining a better understanding of the unique optical and surface properties and chemical reactivity of nanoparticles but also of great potential for developing new biosensing and immunolabeling technologies.  相似文献   

20.
We report a benzo[a]phenoxazine-based far red-emitting probe which selectively senses reduced nicotinamide adenine dinucleotide (NADH) and its phosphate ester NADPH, the most indispensable coenzymes found in all living cells, with “turn-off” fluorescence response at 650?nm. The original probe can be regenerated quantitatively through oxidation using hypochlorous acid, a reactive oxygen species, which was accompanied by restored fluorescence at 650?nm. This probe was also applied for fluorescence imaging of NADH in HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号