首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase-1 is studied with a multistate continuum theory that represents the transferring hydrogen nucleus as a quantum mechanical wave function. The inner-sphere reorganization energy of the iron cofactor is calculated with density functional theory, and the outer-sphere reorganization energy of the protein is calculated with the frequency-resolved cavity model for conformations obtained with docking simulations. Both classical and quantum mechanical treatments of the proton donor-acceptor vibrational motion are presented. The temperature dependence of the calculated rates and kinetic isotope effects is in agreement with the experimental data. The weak temperature dependence of the rates is due to the relatively small free energy barrier arising from a balance between the reorganization energy and the reaction free energy. The unusually high deuterium kinetic isotope effect of 81 is due to the small overlap of the reactant and product proton vibrational wave functions and the dominance of the lowest energy reactant and product vibronic states in the tunneling process. The temperature dependence of the kinetic isotope effect is strongly influenced by the proton donor-acceptor distance with the dominant contribution to the overall rate. This dominant proton donor-acceptor distance is significantly smaller than the equilibrium donor-acceptor distance and is determined by a balance between the larger coupling and the smaller Boltzmann probability as the distance decreases. Thus, the proton donor-acceptor vibrational motion plays a vital role in decreasing the dominant donor-acceptor distance relative to its equilibrium value to facilitate the proton-coupled electron transfer reaction.  相似文献   

2.
The dynamical behavior and the temperature dependence of the kinetic isotope effects (KIEs) are examined for the proton-coupled electron transfer reaction catalyzed by the enzyme soybean lipoxygenase. The calculations are based on a vibronically nonadiabatic formulation that includes the quantum mechanical effects of the active electrons and the transferring proton, as well as the motions of all atoms in the complete solvated enzyme system. The rate constant is represented by the time integral of a probability flux correlation function that depends on the vibronic coupling and on time correlation functions of the energy gap and the proton donor-acceptor mode, which can be calculated from classical molecular dynamics simulations of the entire system. The dynamical behavior of the probability flux correlation function is dominated by the equilibrium protein and solvent motions and is not significantly influenced by the proton donor-acceptor motion. The magnitude of the overall rate is strongly influenced by the proton donor-acceptor frequency, the vibronic coupling, and the protein/solvent reorganization energy. The calculations reproduce the experimentally observed magnitude and temperature dependence of the KIE for the soybean lipoxygenase reaction without fitting any parameters directly to the experimental kinetic data. The temperature dependence of the KIE is determined predominantly by the proton donor-acceptor frequency and the distance dependence of the vibronic couplings for hydrogen and deuterium. The ratio of the overlaps of the hydrogen and deuterium vibrational wavefunctions strongly impacts the magnitude of the KIE but does not significantly influence its temperature dependence. For this enzyme reaction, the large magnitude of the KIE arises mainly from the dominance of tunneling between the ground vibronic states and the relatively large ratio of the overlaps between the corresponding hydrogen and deuterium vibrational wavefunctions. The weak temperature dependence of the KIE is due in part to the dominance of the local component of the proton donor-acceptor motion.  相似文献   

3.
Constraining a single motion between distal residues separated by approximately 28 A in hybrid quantum/classical molecular dynamics simulations is found to increase the free energy barrier for hydride transfer in dihydrofolate reductase by approximately 3 kcal/mol. Our analysis indicates that a single distal constraint alters equilibrium motions throughout the enzyme on a wide range of time scales. This alteration of the conformational sampling of the entire system is sufficient to significantly increase the free energy barrier and decrease the rate of hydride transfer. Despite the changes in conformational sampling introduced by the constraint, the system assumes a similar transition state conformation with a donor-acceptor distance of approximately 2.72 A to enable the hydride transfer reaction. The modified thermal sampling leads to a substantial increase in the average donor-acceptor distance for the reactant state, however, thereby decreasing the probability of sampling the transition state conformations with the shorter distances required for hydride transfer. These simulations indicate that fast thermal fluctuations of the enzyme, substrate, and cofactor lead to conformational sampling of configurations that facilitate hydride transfer. The fast thermal motions are in equilibrium as the reaction progresses along the collective reaction coordinate, and the overall average equilibrium conformational changes occur on the slower time scale measured experimentally. Recent single molecule experiments suggest that at least some of these thermally averaged equilibrium conformational changes occur on the millisecond time scale of the hydride transfer reaction. Thus, introducing a constraint that modifies the conformational sampling of an enzyme could significantly impact its catalytic activity.  相似文献   

4.
5.
This paper presents a general theoretical formulation for proton-coupled electron transfer (PCET) reactions. The solute is represented by a multistate valence bond model, and the active electrons and transferring proton(s) are treated quantum mechanically. This formulation enables the classical or quantum mechanical treatment of the proton donor-acceptor vibrational mode, as well as the dynamical treatment of the proton donor-acceptor mode and the solvent. Nonadiabatic rate expressions are presented for PCET reactions in a number of well-defined limits for both dielectric continuum and molecular representations of the environment. The dynamical rate expressions account for correlations between the fluctuations of the proton donor-acceptor distance and the nonadiabatic PCET coupling. The quantities in the rate expressions can be calculated with a dielectric continuum model or a molecular dynamics simulation of the full system. The significance of the quantum and dynamical effects of the proton donor-acceptor mode is illustrated with applications to model PCET systems.  相似文献   

6.
A global potential energy surface has been constructed through interpolation of our recently developed reaction path potential for chemical reactions in enzymes which is derived from combined ab initio quantum mechanical and molecular mechanical calculations. It has been implemented for the activated molecular dynamics simulations of the initial proton transfer reaction catalyzed by triosephosphate isomerase. To examine the dynamical effects on the rate constants of the enzymatic reaction, the classical transmission coefficient kappa(t) is evaluated to be 0.47 with the reactive flux approach, demonstrating considerable deviations from transition state theory. In addition, the fluctuations of protein environments have small effects on the barrier recrossing, and the transmission coefficient kappa(t) strongly depends on the fluctuations of atoms near the active site of the enzyme.  相似文献   

7.
Decarboxylation of mandelylthiamin in aqueous solution is analyzed by means of quantum mechanics/molecular mechanics simulations including solvent effects. The free energy profile for the decarboxylation reaction was traced, assuming equilibrium solvation, while reaction trajectories allowed us to incorporate nonequilibrium effects due to the solvent degrees of freedom as well as to evaluate the rate of the diffusion process in competition with the backward reaction. Our calculations that reproduce the experimental rate constant show that decarboxylation takes place with a non-negligible free energy barrier for the backward reaction and that diffusion of carbon dioxide is very fast compared to the chemical step. According to these findings catalysts would not act by preventing the backward reaction.  相似文献   

8.
The vibronic couplings for the phenoxyl/phenol and the benzyl/toluene self-exchange reactions are calculated with a semiclassical approach, in which all electrons and the transferring hydrogen nucleus are treated quantum mechanically. In this formulation, the vibronic coupling is the Hamiltonian matrix element between the reactant and product mixed electronic-proton vibrational wavefunctions. The magnitude of the vibronic coupling and its dependence on the proton donor-acceptor distance can significantly impact the rates and kinetic isotope effects, as well as the temperature dependences, of proton-coupled electron transfer reactions. Both of these self-exchange reactions are vibronically nonadiabatic with respect to a solvent environment at room temperature, but the proton tunneling is electronically nonadiabatic for the phenoxyl/phenol reaction and electronically adiabatic for the benzyl/toluene reaction. For the phenoxyl/phenol system, the electrons are unable to rearrange fast enough to follow the proton motion on the electronically adiabatic ground state, and the excited electronic state is involved in the reaction. For the benzyl/toluene system, the electrons can respond virtually instantaneously to the proton motion, and the proton moves on the electronically adiabatic ground state. For both systems, the vibronic coupling decreases exponentially with the proton donor-acceptor distance for the range of distances studied. When the transferring hydrogen is replaced with deuterium, the magnitude of the vibronic coupling decreases and the exponential decay with distance becomes faster. Previous studies designated the phenoxyl/phenol reaction as proton-coupled electron transfer and the benzyl/toluene reaction as hydrogen atom transfer. In addition to providing insights into the fundamental physical differences between these two types of reactions, the present analysis provides a new diagnostic for differentiating between the conventionally defined hydrogen atom transfer and proton-coupled electron transfer reactions.  相似文献   

9.
Fundamental aspects of proton-coupled electron transfer (PCET) reactions in solution are analyzed with molecular dynamics simulations for a series of model systems. The analysis addresses the impact of the solvent reorganization energy, the proton donor-acceptor mode vibrational frequency, and the distance dependence of the nonadiabatic coupling on the dynamics of the reaction and the magnitude of the rate. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The time dependence of the probability flux correlation function is determined mainly by the solvent reorganization energy and is not significantly influenced by the proton donor-acceptor frequency or the distance dependence of the nonadiabatic coupling. The magnitude of the PCET rate becomes greater as the solvent reorganization energy decreases, the proton donor-acceptor frequency decreases, and the distance dependence of the nonadiabatic coupling increases. The approximations underlying a previously derived analytical PCET rate expression are also investigated. The short-time approximation for the solvent is valid for these types of systems. In addition, solvent damping effects on the proton donor-acceptor motion are not significant on the time scale of the probability flux. The rates calculated from the molecular dynamics simulations agree well with those calculated from the analytical rate expression.  相似文献   

10.
The dynamics of a proton between two water molecules is studied by full-dimensional (15 dimensional) quantum dynamics using the multiconfigurational time-dependent Hartree (MCTDH) method. The collision of H(3)O(+) and H(2)O fragments is followed by an ultrafast and nearly irreversible energy transfer from the degrees of freedom that define the hydrogen bond (oxygen-oxygen distance and central proton position) to the rest of the degrees of freedom. The vibrations of the oxygen-oxygen distance are damped within the first 300 fs while the vibrations of the shared proton along the hydrogen bond are damped within the first 150 to 200 fs. Collisions in which the fragments arrive with a high momentum to the interaction distance lead to more recrossing of the transferring proton than collisions with a lower momentum. Slow coordinates, e.g. pyramidalization of the water monomers, have less time to adapt to the incoming or outgoing proton in the case of a high momentum, which leads to an enhanced recrossing effect with respect to slower collisions. In order to understand the energy flow dynamics between the vibration of the shared proton and other degrees of freedom a 5-state model is constructed and exactly solved. The energies and couplings of the states of the model are obtained from the analysis of the infrared spectroscopy of the H(5)O(2)(+) cation, namely from splittings and shifts of the most important spectral lines. The model qualitatively reproduces the key aspects of the full dynamics related to the vibrations of the shared proton, indicating that the proposed coupling scheme is correct.  相似文献   

11.
The reaction path, the dynamical properties along the reaction path and CVT rate constants are computed by the ab initio MO method, the reaction path Hamiltonian theory and the variational transition state theory. The results show that the effect of the electron correlation energy on activation barrier is large, the recrossing and tunneling effects exist in the reaction.  相似文献   

12.
Jarzynski's relation and the fluctuation theorem have established important connections between nonequilibrium statistical mechanics and equilibrium thermodynamics. In particular, an exact relationship between the equilibrium free energy and the nonequilibrium work is useful for computer simulations. In this paper, we exploit the fact that the free energy is a state function, independent of the pathway taken to change the equilibrium ensemble. We show that a generalized expression is advantageous for computer simulations of free energy differences. Several methods based on this idea are proposed. The accuracy and efficiency of the proposed methods are evaluated with a model problem.  相似文献   

13.
We study the hydrogen tunneling problem in a model system that represents the active site of the biological enzyme, soybean lipoxygenase-1. Toward this, we utilize quantum wavepacket dynamics performed on potential surfaces obtained by using hybrid density functional theory under the influence of a dynamical active site. The kinetic isotope effect is computed by using the transmission amplitude of the wavepacket, and the experimental value is reproduced. By computing the hydrogen nuclear orbitals (eigenstates) along the reaction coordinate, we note that tunneling for both hydrogen and deuterium occurs through the existence of distorted, spherical s-type proton wave functions and p-type polarized proton wave functions for transfer along the donor-acceptor axis. In addition, there is also a significant population transfer through distorted p-type proton wave functions directed perpendicular to the donor-acceptor axis (via intervening pi-type proton eigenstate interactions) which underlines the three-dimensional nature of the tunneling process. The quantum dynamical evolution indicates a significant contribution from tunneling processes both along the donor-acceptor axis and along directions perpendicular to the donor-acceptor axis. Furthermore, the tunneling process is facilitated by the occurrence of curve crossings and avoided crossings along the proton eigenstate adiabats.  相似文献   

14.
Path integral molecular dynamics methods are employed to compute the free energy for proton transfer reactions for strongly hydrogen bonded systems in a polar solvent. The free energy profile is calculated using several different techniques, including: integration of the mean force acting on the proton path with its centroid constrained at different values, the integral form of the free energy calculation in the constrained-reaction-coordinate-dynamics ensemble and direct simulation of the unconstrained dynamics. The results show that estimates of the free energy barrier obtained by harmonic extrapolation are likely to be in error. Both quantum and classical results for the free energy are obtained and compared with simulations using adiabatic quantum dynamics. Comparison of the quantum and classical results show that there are quantum corrections to the solvent contributions to the free energy.  相似文献   

15.
Recent experimental evidence has pointed to the possible presence of a short, strong hydrogen bond in the enzyme-substrate transition states in some biochemical reactions. To date, most experimental measures of these short, strong hydrogen bonds have monitored their equilibrium properties. In this work we show that kinetic measurements can also be used to detect the presence of short, strong hydrogen bonds. In particular, we find nontrivial differences among rate constant ratios of protonated to deuterated hydrogen bonds between strong and weak hydrogen bonds for proton transfer between donor-acceptor sites. We quantify this kinetic isotope effect by performing dynamical calculations of these rate constants by computing reactive flux through a dividing surface. This reactive flux is computed by evolving trajectories on an effective quantum mechanical potential energy surface.  相似文献   

16.
The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory within second quantization representation of the Fock space, a novel numerically exact methodology to treat many-body quantum dynamics for systems containing identical particles, is applied to study the effect of vibrational motion on electron transport in a generic model for single-molecule junctions. The results demonstrate the importance of electronic-vibrational coupling for the transport characteristics. For situations where the energy of the bridge state is located close to the Fermi energy, the simulations show the time-dependent formation of a polaron state that results in a pronounced suppression of the current corresponding to the phenomenon of phonon blockade. We show that this phenomenon cannot be explained solely by the polaron shift of the energy but requires methods that incorporate the dynamical effect of the vibrations on the transport. The accurate results obtained with the ML-MCTDH in this parameter regime are compared to results of nonequilibrium Green's function theory.  相似文献   

17.
Xylose isomerase exhibits a bridged-bimetallic active-site motif in which the substrate is bound to two metals connected by a glutamate bridge, and X-ray crystallographic studies suggest that metal movement is involved in the hydride transfer rate-controlling catalytic step. Here we report classical/quantal dynamical simulations of this step that provide new insight into the metal motion. The potential energy surface is calculated by treating xylose with semiempirical molecular orbital theory augmented by a simple valence bond potential and the rest of the system by molecular mechanics. The rate constant for the hydride-transfer step was calculated by ensemble-averaged dynamical simulations including both variational transition-state theory for determination of the statistically averaged dynamical bottleneck and optimized multidimensional tunneling calculations. The dynamics calculations include 25 317 atoms, with quantized vibrational free energy in 89 active-site degrees of freedom, and with 32 atoms moving through static secondary zone transition-state configurations in the quantum tunneling simulation. Our simulations show that the average Mg-Mg distance R increases monotonically as a function of the hydride-transfer progress variable z. The range of the average R along the reaction path is consistent with the X-ray structure, thus providing a dynamical demonstration of the postulated role of Mg in catalysis. We also predicted the primary deuterium kinetic isotope effect (KIE) for the chemical step. We calculated a KIE of 3.8 for xylose at 298 K, which is consistent with somewhat smaller experimentally observed KIEs for glucose substrate at higher temperatures. More than half of our KIE is due to tunneling; neglecting quantum effects on the reaction coordinate reduces the calculated KIE to 1.8.  相似文献   

18.
The possible catalysis of photochemical reactions by water molecules is considered. Using theoretical simulations, we investigate the HF-elimination reaction of fluoromethanol in small water clusters initiated by the overtone excitation of the hydroxyl group. The reaction occurs in competition with the process of water evaporation that dissipates the excitation and quenches the reaction. Although the transition state barrier is stabilized by over 20 kcal/mol through hydrogen bonding with water, the quantum yield versus energy shows a pronounced delayed threshold that effectively eliminates the catalytic effect. It is concluded that the quantum chemistry calculations of barrier lowering are not sufficient to infer water catalysis in some photochemical reactions, which instead require dynamical modeling.  相似文献   

19.
To elucidate enzyme catalysis through computer simulation, a prerequisite is to reliably compute free energy barriers for both enzyme and solution reactions. By employing on-the-fly Born-Oppenheimer molecular dynamics simulations with the ab initio quantum mechanical/molecular mechanical approach and the umbrella sampling method, we have determined free energy profiles for the methyl-transfer reaction catalyzed by the histone lysine methyltransferase SET7/9 and its corresponding uncatalyzed reaction in aqueous solution, respectively. Our calculated activation free energy barrier for the enzyme catalyzed reaction is 22.5 kcal/mol, which agrees very well with the experimental value of 20.9 kcal/mol. The difference in potential of mean force between a corresponding prereaction state and the transition state for the solution reaction is computed to be 30.9 kcal/mol. Thus, our simulations indicate that the enzyme SET7/9 plays an essential catalytic role in significantly lowering the barrier for the methyl-transfer reaction step. For the reaction in solution, it is found that the hydrogen bond network near the reaction center undergoes a significant change, and there is a strong shift in electrostatic field from the prereaction state to the transition state, whereas for the enzyme reaction, such an effect is much smaller and the enzyme SET7/9 is found to provide a preorganized electrostatic environment to facilitate the methyl-transfer reaction. Meanwhile, we find that the transition state in the enzyme reaction is a little more dissociative than that in solution.  相似文献   

20.
The possibility of water catalysis in the vibrational overtone-induced dehydration reaction of methanediol is investigated using ab initio dynamical simulations of small methanediol-water clusters. Quantum chemistry calculations employing clusters with one or two water molecules reveal that the barrier to dehydration is lowered by over 20 kcal/mol because of hydrogen-bonding at the transition state. Nevertheless, the simulations of the reaction dynamics following OH-stretch excitation show little catalytic effect of water and, in some cases, even show an anticatalytic effect. The quantum yield for the dehydration reaction exhibits a delayed threshold effect where reaction does not occur until the photon energy is far above the barrier energy. Unlike thermally induced reactions, it is argued that competition between reaction and the irreversible dissipation of photon energy may be expected to raise the dynamical threshold for the reaction above the transition state energy. It is concluded that quantum chemistry calculations showing barrier lowering are not sufficient to infer water catalysis in photochemical reactions, which instead require dynamical modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号