首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of (3,5-dimethylpyrazolylmethyl)pyridine (L1) and (3,5-diphenylpyrazolylmethyl)pyridine (L2) with either [PdCl2(NCMe)2] or [PdClMe(COD)] afforded the respective neutral palladium complexes, [PdCl2(L1)] (1), [PdCl2(L2)] (2) and [PdClMe(L1)] (3). Treatment of complex 1 with equimolar amounts of PPh3 or PPh3/NaBAr4 produced the corresponding cationic complexes [Pd(L1)ClPPh3]Cl (4) and [Pd(L1)ClPPh3]BAr4 (5), respectively. Complexes 15 formed active catalysts in hydrogenation of alkenes and alkynes. Isomerization reactions were predominant in the hydrogenation reactions of terminal alkenes, while hydrogenation of alkynes involved a two-step process via alkene intermediates prior to the formation of the respective alkenes. The lack of induction periods in the hydrogenation reactions in addition to pseudo-first-order kinetics with respect to the substrates established the homogeneous nature of the active species.  相似文献   

2.
The coordination chemistry and cationic binding properties of 2,6-bis(pyrazol-1-ylmethyl)pyridine (L1), 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L2), and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (L3) with zinc(II) and cadmium(II) have been investigated. Reactions of L2 with zinc(II) and cadmium(II) nitrate or chloride salts produced monometallic complexes [Zn(NO3)2(L2)] (1), [ZnCl2(L2)] (2), [Cd(NO3)2(L2)] (3), and [CdCl2(L2)] (4). Solid state structures of 1 and 3 confirmed that L2 binds in a tridentate mode. While the nitrates in the zinc complex (1) adopt monodentate binding fashion, in cadmium complex (3), they exhibit bidentate mode. L1L3 show binding efficiencies of 99% for zinc(II), 60% for lead(II), and 30% for cadmium(II) cations from aqueous solutions of the metal ions. Theoretical studies using Density Functional Theory were consistent with the observed extraction results.  相似文献   

3.
The substituted pyrazole palladium complexes, (3,5-tBu2pz)2PdCl2 (1) (3,5-Me2pz)2PdCl2 (2), (3-Mepz)2PdCl2 (3) and (pz)2PdCl2 (4) (pzH=pyrazole), can be prepared from the reaction of (COD)PdCl2 with the appropriate pyrazole. The chloromethyl derivative, (3,5-tBu2pz)2PdCl(Me) (5), was prepared from (COD)PdClMe and tBu2pzH. X-ray crystal structure determination of 1 and 5 established their structures in the solid state to be the trans-isomer. After activation of 1-4 and 5 with methylaluminoxane (MAO) the resulting palladium complexes were used as catalysts in ethylene polymerization, yielding linear high-density polyethylene (HDPE). The highest activity was observed for (3,5-tBu2pz)PdClMe.  相似文献   

4.
The reactions of [M2Cl2(μ-Cl)2(PMe2Ph)2] with mercapto-o-carboranes in the presence of pyridine afforded mono-nuclear complexes of composition, [MCl(SCb°R)(py)(PMe2Ph)] (M = Pd or Pt; Cb° = o-C2B10H10; R = H or Ph). The treatment of [PdCl2(PEt3)2] with PhCb°SH yielded trans-[Pd(SCb°Ph)2(PEt3)2] (4) which when left in solution in the presence of pyridine gave another substitution product, [Pd(SCb°Ph)2(py)(PEt3)] (5). The structures of [PdCl(SCb°Ph)(py)(PMe2Ph)] (1), [Pd(SCb°Ph)2(PEt3)2] (4) and [Pd(SCboPh)2(py)(PEt3)] (5) were established unambiguously by X-ray crystallography. The palladium atom in these complexes adopts a distorted square-planar configuration with neutral donor atoms occupying the trans positions. Thermolysis of [PdCl(SCb°)(py)(PMe2Ph)] (2) in TOPO (trioctylphosphine oxide) at 200 °C gave nanocrystals of TOPO capped Pd4S which were characterized by XRD pattern and SEM.  相似文献   

5.
The reaction of [Na2PdCl4] with 3,5-bis(2-pyridoxy)toluene (LpyH) in acetic acid yields the cyclometalated complex [PdCl(Lpy-N, C, N)] (1). Complex 1 can be further converted into neutral species by metathesis reaction exchange of chloride by either iodide or thiocyanate to yield [PdX(Lpy-N, C, N)] (X = I (2), SCN (3)). The chloride can be replaced by neutral ligands like pyridine or acetonitrile in the presence of silver tetrafluoroborate to give the corresponding cationic compounds [PdL(Lpy-N, C, N)]BF4 (L = Py (4), MeCN (5)). In contrast, the reaction of [Na2PdCl4] with 3,5-bis(3, 5-dimethylpyrazol-1-ylmethyl)toluene (LpzH) under analogous conditions yields the neutral complex [PdCl2(LpzH-N, N)](6) with the ligand bidentate N,N-donor. The cyclometalated palladium complex [PdCl(Lpz-N, C, N)] (7) was prepared by the reaction of Pd(OAc)2 with LpzH in acetic acid followed by a metathetic reaction with lithium chloride in acetone/water. Complexes 1, 6, and 7 in the presence of methylaluminoxane (MAO) lead to an active catalyst for the polymerization of ethylene.  相似文献   

6.
Chiral and achiral p-tert-butyl-calix[4]arene bisphosphites (L1L3) have been synthesized by the reaction of p-tert-butyl-calix[4]arene and the phosphorodichloridites, ROPCl2 [R = (1S,2R,5R)-(+)-iso-menthyl (L1), (1R,2S,5R)-(−)-menthyl (L2) or C6H4But-4 (L3)]. These bisphosphites function as chelating ligands in palladium(II) and platinum(II) complexes which are formed in good yields by the reaction of PdCl2(PhCN)2, MCl2(COD) (M = Pd or Pt) or PdMeCl(COD) with the respective calix[4]arene bisphosphite. Single crystal X-ray diffraction studies performed on the complexes [PdCl2(L1)], [PdCl2(L2)], [PdCl2(L3)] and [PtCl2(L3)] reveal a near square planar geometry around the metal with the two chloride ligands in a cis disposition. The crystal packing in the complexes [PdCl2(L1)] and [PdCl2(L2)], which crystallize in the chiral (P6122) space group, shows different hydrophobic channels with intermolecular C–H?Cl hydrogen bonding. The complexes [PdCl2(L3)] and [PtCl2(L3)] are isostructural and the molecules in the crystal lattice are linked by intermolecular C–H?Cl and C–H?O hydrogen bonds.  相似文献   

7.
The tetraphosphine DPPEPM reacts with [PtMe2(cod)] to produce [PtMe2(DPPEPM-PP)] (1) in near quantitative yield. On standing in solution, the free P atoms become oxidized to give [PtMe2(DPPEPM(O)2-PP)] (1a), which has been characterized by X-ray crystallography. In contrast, reactions of DPPEPM with [MCl2(cod)] (M = Pd, Pt) yield ionic products of the form [M(DPPEPM-PP)2]MCl4 (3, 4). When a solution of the platinum complex was allowed to stand, crystals of [Pt(μ-Cl)(μ-DPPEPM)2]Cl3 (5) were obtained. In a third set of reactions, treatment of [PtClR(cod)] (R = Me, Ph) or [PdClMe(cod)] with DPPEPM gives species of the type [MR(DPPEPM-PPP)]Cl (6-8), in which one of the internal P atoms is uncoordinated. Reactions of [PtR2(DPPEPM-PP)] with or [MCl2(cod)] (M = Pd, Pt), or of [PtR(DPPEPM-PPP)]Cl with [MCl2(cod)], lead to unsymmetrical bimetallic complexes. [PtMe2(μ-DPPEPM)PdCl2] (11) and [PtClPh(μ-DPPEPM)PdCl2] (14) have been characterized crystallographically. Trimetallic complexes of the form [{PtR2(μ-DPPEPM)}2M][MCl4] (M = Pd, Pt, 15-17) are produced by reaction of [PtR2(DPPEPM-PP)] with [MCl2(cod)].  相似文献   

8.
[TiCl2(salen)] (1) reacts with AlMe3 (1:2) to give the heterometallic Ti(III) and Ti(IV) complexes [Ti{(μ-Cl)(AlMe2)}{(μ-Cl)(AlMe2X)}(salen)] (X=Me or Cl) (2) and [TiMe{(μ-Cl)(AlCl2Me)}(salen)] (3). Addition of diethyl ether to 3 affords [Ti(Me)Cl(salen)] (4). The analogous reaction of [TiBr2(salen)] (5) gives the crystallographically characterised [Ti{(μ-Br)(AlMe2)}{(μ-Br)(AlMe2X)}(salen)] (X=Me or Br) (6) and [Ti(Me)Br(salen)] (7) in a single step, whilst the comparable reaction of [TiCl2{(3-MeO)2salen}] (8) with AlMe3 yields [Ti(Me)Cl{(3-MeO)2salen}] (9) with no evidence of titanium(III) species. Reactivity of both halide and methyl groups of 4 has been probed using magnesium reduction, SbCl5 and AgBF4 halide abstraction and SO2 insertion reactions. Hydrolysis of [Ti(Me)X(L)] complexes affords μ-oxo species [TiX(L)]2(μ-O) [X=Cl, L=salen (13); X=Br, L=salen (14); X=Cl, L=(3-MeO)2salen (15)].  相似文献   

9.
Ligands (2-pyridyl-2-furylmethyl)imine, (L1), (2-pyridyl-2-thiophenemethyl)imine (L2), and (2-pyridyl-2-thiopheneethyl)imine (L3) were synthesized by condensation reactions and obtained in good yields. Reactions of L1-L3 with either [PdClMe(cod)] or [PdCl2(cod)] gave the corresponding monometallic palladium(II) complexes 1-5 in very good yields. Molecular structures of complexes 1, 4 and 5 indicated that the ligands are bidentate and coordinate to the palladium metal through the imine and pyridine nitrogen atoms. When complexes 3-5 were treated with NaBAr4, cationic species, 3a, 4a, and 5a were produced which catalyzed polymerization of ethylene though with very low activities. 1H NMR spectroscopy studies showed that these cationic species were very stable in solution. DFT calculations showed high ethylene coordination barriers to the cationic species 3a, 4a and 5a.  相似文献   

10.
Several Pd(II) complexes containing the potentially bidentate ligand 2-(diphenylphosphino)-1-methylimidazole, dpim, have been synthesized and characterized: [PdCl2(dpim)]n (1), [PdCl2(H2O)(dpim-κP)] (2), [PdClMe(μ-dpim-κPN)]2 (3) (previously described), [PdClMe(dpim-κP)2] (4), [Pd(C6F5)2(dpim-κP)2] (5) and [Pd(η3-2-Me-C3H4)(μ-dpim-κPN)]2[PF6]2 (6). The highly insoluble complex 1 dissolves in wet DMSO-d6 to give the water adduct 2 in which a hydrogen bond is established between one of the water hydrogens and the imidazolyl nitrogen. Two types of coordination mode have been found for the dpim ligand in these derivatives, with the ligand behaving as P monodentate and also as a P,N bridge. The transformations between 3 and 4 demonstrate the hemilability of the dpim ligand. Complex 6 was obtained as a mixture of two pairs of enantiomers (R,S)/(S,R) and (R,R)/(S,S). Analysis of the fluxional behaviour of 6, in which the allyl group acts as a “reporter ligand”, indicates that Pd-N bond rupture takes place - again providing evidence of the hemilabile character of the dpim ligand.  相似文献   

11.
The synthesis of two N-alkylaminopyrazole ligands, 1-[2-(diethylamino)ethyl]-3,5-diphenylpyrazole (L1) and 1-[2-(dioctylamino)ethyl]-3,5-diphenylpyrazole (L2), is reported. These ligands present, a priori, one pyrazole nitrogen and one amine nitrogen as potential donor atoms. However, in the reaction of the ligands (L1 and L2) with [PdCl2(CH3CN)2] one of the Cphenyl atoms can also behave as a donor atom. As a result, we have obtained the formation of three different compounds for each one of the ligands: chelated ([PdCl2(L)] L = L1 (1a), L2 (2a)), zwitterionic ([PdCl3(LH)] LH = LH1 (1b), LH2 (2b)), and cyclopalladated compounds ([PdCl(LC)] (LC = LC1 (1c), LC2 (2c)). The solid-state structures for 1a, 1b and 1c were determined by single crystal X-ray diffraction methods. The potentially [C,N,N′]? ligand is coordinated through the Npz and the Namino to the metal atom for 1a, through the Npz for 1b, and through the Npz, the Namino and a Cphenyl for 1c.  相似文献   

12.
We have studied the oxidation of catechol to o-quinone with atmospheric dioxygen at ambient conditions by in situ generated copper (II) complexes of five electron-rich nitrogen ligands: (3,5-dimethyl-pyrazol-1-yl)-methanol L1; 3-benzylamino-propionitrile L2; 3-[benzyl-(3,5-dimethyl-pyrazol-1-ylmethyl)-amino]-propionitrile L3; {3-[(2-cyano-ethyl)-(1,5-dimethyl-1H-pyrazol-3-ylmethyl)-amino]-propyl}-(1,5-dimethyl-1H-pyrazol-3-ylmethyl)-amino]-propionitrile L4 and 3-[{2-[(2-cyano-ethyl)-(1,5-dimethyl-1H-pyrazol-3-ylmethyl)-amino]-ethyl}-(1,5-dimethyl-1H-pyrazol-3-ylmethyl)-amino]-propionitrile L5. We found that all complexes catalyze the oxidation reaction with different rates depending on three parameters: the nature of the ligand, the nature of ion salts, and the concentration of the complex. The combination of L3(CuSO4) gave the highest rate of this activity about 8.71 μmol1/L1/min1.  相似文献   

13.
Herein the synthesis of 3-(3,5-Dimethyl-1H-pyrazol-1-yl)butanal oxime (L) and its complex formation with PdCl2 is studied. IR and 1Н NMR spectroscopic methods as well as X-ray diffraction analysis (СIF file CCDC no. 1531058) elucidate that the nitrogen atoms N(4) and N(15) from pyrazole and imine group of oxime respectively, participate in coordination with PdCl2. Moreover, primarily thermal stability test shows that [PdCl2(L)] complex (I) is quite stable at moderate temperatures and intense decomposition of latter occurs ca 200–210°C. As a consequence of thermal decomposition, both volatile ligand and its dehydration by-product 3-(3,5-dimethyl-1H-pyrazol-1-yl)butanenitrile are formed. Afterwards, the anticonvulsant properties of PdCl2, L, and I are of interest and well studied in this section.  相似文献   

14.
Oxidative coupling of 3-(3-tert-butyl-4-hydroxyphenyl)propionic acid methyl ester (2) gave dimethyl 3,3′-(5,5′-di-tert-butyl-6,6′-dihydroxybiphenyl-3,3′-diyl)-dipropionate (1c), which upon phosphorylation/transesterification with a phosphochloridite derived from (R)-binaphthol, formed the new unsymmetrical binaphthol-bridged diphosphite 4. A rhodium catalyst based on 4 as ligand gave predominantly iso-selectivity in the hydroformylation of selected styrenes but opposite regioselectivity with 2,6-disubstituted derivatives. New chelate metal complexes (acac)RhL, PdCl2L and PtCl2L have been synthesized by reacting 4 with (acac)Rh(CO)2, PdCl2(MeCN)2 and PtCl2(COD), respectively. The structure of obtained compounds is determined based on 1H, 13C, 31P and 195Pt NMR spectroscopy and mass spectrometry data.  相似文献   

15.
Facile oxidative addition of SnCl4, MeSnCl3, and SnBr4 across Ir(I) and Rh(I) cyclooctadiene complexes resulted in the formation of the corresponding Ir-Sn and Rh-Sn heterobimetallic complexes. Treatment of SnCl4 with [Ir(COD)(μ-Cl)]2 and [Rh(COD)(μ-Cl)]2 afforded [Ir(COD)(μ-Cl)Cl(SnCl3)]2 (1) and [Rh(COD)(μ-Cl)Cl(SnCl3)]2 (2), respectively. Reaction of the organotin halide MeSnCl3 with [Ir(COD)(μ-Cl)]2 led to the formation of [Ir(COD)(μ-Cl)Cl(MeSnCl2)]2 (3). The reaction of SnBr4 to IrI and RhI precursors gave [Ir(COD)(μ-Br)Br(SnBr3)]2 (4) and [Rh(COD)(μ-Br)Br(SnBr3)]2 (5) respectively, which indicates halide exchange at post-oxidative addition stage. The structures of complexes 1-5 were confirmed by X-ray crystallography. A cis-addition of Sn-X bond across IrI/RhI is proposed from the analysis of the geometrical features of “X-M-Sn” triangular units in 1-5.  相似文献   

16.
The compounds, 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (MeNˆNˆN) (L1) and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (tBuNˆNˆN) (L2), react with either [Pd(NCMe)2Cl2] or [Pd(COD)ClMe] to form the mononuclear palladium complexes [Pd(MeNˆNˆN)Cl2] (1), [Pd(MeNˆNˆN)ClMe] (2), [Pd(tBuNˆNˆN)Cl2] (3) and [Pd(tBuNˆNˆN)ClMe] (4). Reactions of 1, 2 and 4 with the halide abstractor, NaBAr4 (Ar = 3,5-(CF3)2C6H3), led to the formation of stable tridentate cationic species [Pd(MeNˆNˆN)Cl]+(5), [Pd(MeNˆNˆN)Me]+ (6) and [Pd(tBuNˆNˆN)Cl]+ (7) respectively. The analogous carbonyl linker cationic species [Pd{(3,5-Me2pz-CO)2-py}Cl]+ (9) and [Pd{(3,5-tBu2pz-CO)2-py}Cl]+ (10), prepared by halide abstraction of the neutral complexes [Pd{(3,5-Me2pz-CO)2-py}Cl2] and [Pd{(3,5-tBu2pz-CO)2-py}Cl2] by NaBAr4, were however less stable with t1/2 of 14 and 2 days respectively. Attempts to crystallize 1 and 3 from the mother liquor resulted in the isolation of the salts [Pd(MeNˆNˆN)Cl]2[Pd2Cl6] (11) and [Pd(tBuNˆNˆN)Cl]2[Pd2Cl6] (12). Although when complexes 14 were reacted with modified methylaluminoxane (MMAO) or NaBAr4, no active catalysts for ethylene oligomerization or polymerization were formed, activation with silver triflate (AgOTf) produced active catalysts that oligomerized and polymerized phenylacetylene to a mixture of cis-transoidal and trans-cisoidal polyphenylacetylene.  相似文献   

17.
Reactions of 1,3-bis(pyridin-2-ylmethyl)-1H-imidazol-3-ium hexafluorophosphate, ([HL1](PF6), L1 = 1,3-bis(pyridin-2-ylmethyl)imidazolylidene) and 1,3-bis(pyridin-2-ylmethyl)-1H-benzimidazol-3-ium hexafluorophosphate ([HL2](PF6), L2 = 1,3-bis(pyridin-2-ylmethyl)benzoimidazolylidene) with cuprous oxide in acetonitrile readily yielded trinuclear complexes [Cu3(L1)3(PF6)3] (1) and [Cu3(L2)3(PF6)3] (2). Treatment of 1 with Ni(PPh3)2Cl2 and Pd(cod)Cl2 gave [Ni(L1)Cl](PF6) (3) and [Pd(L1)Cl](PF6) (4), respectively, due to transmetalation. [Ni(L1)2](PF6)2 (5) was obtained from the reaction of [Cu3(L1)3(PF6)3] and Raney nickel in acetonitrile. All these complexes have been fully characterized. Both 1 and 2 consist of a triangular Cu3 core with each Cu–Cu bond capped by an imidazolylidene group. Each imidazolylidene acts as a bridging ligand in a μ2 mode and is bonded equally to two Cu(I) ions. The pincer nickel and palladium complexes are square-planar and contain a tridentate NCN ligand. Complexes 3 and 4 are efficient catalyst precursors for Kumada–Corriu and Suzuki–Miyaura coupling reactions of aryl halides with organometallic reagents.  相似文献   

18.
Complexes of 2-((3,5-dimethyl)-1H-pyrazol-1-ylmethyl)pyridine (L1), 2-((3,5-ditert-butyl-1H-pyrazol-1-yl)methyl)pyridine (L2), 2-((3,5-diphenyl)-1H-pyrazol-1-yl)methyl)pyridine (L3), 2-((3,5-bis(trifluoromethyl)-1H-pyrazol-1-ylmethyl)pyridine (L4) and 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridine (L5) with cobalt(II), iron(II) and nickel(II), Ni(L1)Cl2 (1), Co(L1)Cl2 (2), Fe(L1)Cl2 (3), Ni(L2)Cl2 (4), Ni(L3)Cl2 (5), Co(L3)Cl2 (6), Fe(L3)Cl2 (7), Ni(L4)Cl2 (8) and Ni(L5)Cl2 (9), were used as catalyst precursors to produce vinyl-addition type norbornene polymers. Both the identity of the metal center and nature of ligand affected the polymerization behaviour of the resultant catalysts. Nickel catalysts were generally more active than the corresponding iron and cobalt analogues. The polynorbornene produced have high molecular weights (0.5-2.1 × 106 g/mol) and narrow molecular weight distributions. Analyses of polymer microstructure using NMR and IR spectroscopy confirmed the polymers produced to be vinyl-addition polynorbornene.  相似文献   

19.
The reactions of palladium(II) chloride, PPh3 and heterocyclic-N/NS ligand in a mixture of CH3CN (5 ml) and CH3OH (5 ml) produced [PdCl2(PPh3)(L1)]·(CH3CN) (1) (L1 = ADMT = 3-amino-5,6-dimethyl-1,2,4-triazine), [PdCl2(PPh3)(L2)] (2) (L2 = 3-CNpy = 3-cyanopyridine), [PdCl(PPh3)(L3)]2·(CH3CN) (3), [PdCl(PPh3)2(HL3)]Cl (4) (HL3 = Hmbt = 2-mercaptobenzothiazole). The coordination geometry around the Pd atoms in these complexes is a distorted square plane. In 3, L3 acts as a bidentate ligand, bridging two metal centers, while in 4, HL3 appears as monodentate ligand with one nitrogen donor atom uncoordinated. Complexes 1-4 are characterized by IR, luminescence, NMR and single crystal X-ray diffraction analysis. All complexes exhibit luminescence in solid state at room temperature.  相似文献   

20.
Reactions of 1,3-bis(pyridin-2-ylmethyl)-1H-imidazol-3-ium hexafluorophosphate, ([HL1](PF6), L1 = 1,3-bis(pyridin-2-ylmethyl)imidazolylidene) and 1,3-bis(pyridin-2-ylmethyl)-1H-benzimidazol-3-ium hexafluorophosphate ([HL2](PF6), L2 = 1,3-bis(pyridin-2-ylmethyl)benzoimidazolylidene) with cuprous oxide in acetonitrile readily yielded trinuclear complexes [Cu3(L1)3(PF6)3] (1) and [Cu3(L2)3(PF6)3] (2). Treatment of 1 with Ni(PPh3)2Cl2 and Pd(cod)Cl2 gave [Ni(L1)Cl](PF6) (3) and [Pd(L1)Cl](PF6) (4), respectively, due to transmetalation. [Ni(L1)2](PF6)2 (5) was obtained from the reaction of [Cu3(L1)3(PF6)3] and Raney nickel in acetonitrile. All these complexes have been fully characterized. Both 1 and 2 consist of a triangular Cu3 core with each Cu–Cu bond capped by an imidazolylidene group. Each imidazolylidene acts as a bridging ligand in a μ2 mode and is bonded equally to two Cu(I) ions. The pincer nickel and palladium complexes are square-planar and contain a tridentate NCN ligand. Complexes 3 and 4 are efficient catalyst precursors for Kumada–Corriu and Suzuki–Miyaura coupling reactions of aryl halides with organometallic reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号