首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The structural and chemical characterization of Rh, Mo and Rh–Mo nanosized clusters formed by physical vapor deposition on TiO2 single crystal was performed by Auger Electron Spectroscopy (AES), Thermal Desorption Spectroscopy (TDS) and Reflection Absorption Infrared Spectroscopy (RAIRS), applying CO as test molecule. On a slightly reduced titania surface 2D-like growth of Rh was revealed at 300 K up to 0.23 ML coverage by AES and CO-desorption experiments. For CO-saturated Rh particles TDS showed molecular CO desorption in a broad temperature range with Tp = 400, 440, 490 and 540 K (α-states), the latter state appearing only on the smallest Rh particles. The population of γ-state (Tp = 780–820 K) originating from the recombination of C and O atoms on the support began at ΘRh = 0.23ML and was maximized at around 1–2 ML Rh coverage, corresponding to 30% dissociation of CO. A possible dissociation precursor on Rh particles is identified as linearly bonded CO on step sites characterized by ν(C–O) of 2017 cm? 1. Deliberation of CO2 could not be detected between 170 and 900 K, showing the absence of disproportionation reaction. Instead of oxidizing CO molecules, oxygen atoms stemming from the dissociation of CO attached to the reduced centers of titania, indicating the role of adsorption sites at the perimeter of Rh particles in the decomposition process. 2 ML of predeposited Mo enhanced markedly the dispersion of Rh particles as a result of strong Rh–Mo interaction, but it slightly reduced the molecular α-CO desorption possibly due to enhanced dissociation. The formation of γ-CO was suppressed considerably through elimination of adsorption centers by Mo on the TiO2 substrate. The reactivity of Rh layers deposited on Mo-covered surface towards CO was reduced after repeated annealing to 600 K due to partial encapsulation of Rh by titania, manifesting in the suppression of the more strongly bonded α-state. Mo-deposits (up to 0.5ML) on Rh particles decreased the saturation coverage of α-CO through a site-blocking mechanism without detectable influence on the binding energy of CO to Rh, indicating Mo island formation. The carbon arising from the decomposition of CO dissolved in the Mo-containing particles formed a solid solution stable even at 900 K, suggesting a possible role of molybdenum carbide regarding the enhanced catalytic activity of Rh clusters.  相似文献   

2.
Trimetallic perovskite oxides, Sm(1 ? x)CexFeO3 ± λ (x = 0–0.05), were prepared by thermal decomposition of amorphous citrate precursors followed by calcinations. The material properties of the substituted perovskites were characterized by X-ray diffraction (XRD), X-ray florescence spectroscopy (XRF), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The doped materials exhibited a single perovskite phase in air up to 1350 °C and have specific surface areas in the range of 2.696–8.665 m2/g. In reducing atmosphere (5%v/vH2/N2), the unsubstituted perovskite (x = 0) decomposed into two phases while the ceria stabilized materials (x = 0.01, x = 0.03, x = 0.05) remained in a single phase as revealed by XRD analysis. Their conductivities were measured by the four point probe method in air and in dilute hydrogen (5%v/vH2/N2) separately. The ceria substituted materials show increased stability versus reduction and phase separation for a wide temperature range (up to 1000 °C). Although undoped SmFeO3 has higher conductivity under oxidizing conditions than ceria doped SmFeO3 due its p-type nature, the situation is reversed under reducing conditions. The ceria substituted perovskites (Sm(1 ? x)CexFeO3 ± λ, x = 0–0.05) showed higher conductivity in reducing than in oxidizing conditions, suggesting that ceria doping at the A-site has changed the SmFeO3 from p-type to n-type semi-conducting behavior.  相似文献   

3.
In-situ gas-injection transmission electron microscopy revealed that a pillar grew at the edge of the interface of a gold nanoparticle and a TiO2 substrate during exposure to O2 gas at 100 Pa. The pillar was found to have a titanium-deficient chemical composition of Ti1 ? xO2 (x > 0) by electron energy loss spectroscopy (EELS). The spectra showed a chemical shift of oxygen and titanium ions to have ionic states of Ti3+ and Oy? (y < 3/2). The formation of the Ti1 ? xO2 at the contact edge of gold–Ti1 ? xO2 interface is discussed from the perspective of an O2 affinity, which plays an important role in CO oxidation process of supported gold particle.  相似文献   

4.
The adsorption/decomposition kinetics/dynamics of thiophene has been studied on silica-supported Mo and MoSx clusters. Two-dimensional cluster formation at small Mo exposures and three-dimensional cluster growth at larger exposures would be consistent with the Auger electron spectroscopy (AES) data. Thermal desorption spectroscopy (TDS) indicates two reaction pathways. H4C4S desorbs molecularly at 190–400 K. Two TDS features were evident and could be assigned to molecularly on Mo sites, and S sites adsorbed thiophene. Assuming a standard preexponential factor (ν = 1 × 1013/s) for first-order kinetics, the binding energies for adsorption on Mo (sulfur) sites amount to 90 (65) kJ/mol for 0.4 ML Mo exposure and 76 (63) kJ/mol for 2 ML Mo. Thus, smaller clusters are more reactive than larger clusters for molecular adsorption of H4C4S. The second reaction pathway, the decomposition of thiophene, starts at 250 K. Utilizing multimass TDS, H2, H2S, and mostly alkynes are detected in the gas phase as decomposition products. H4C4S bond activation results in partially sulfided Mo clusters as well as S and C residuals on the surface. S and C poison the catalyst. As a result, with an increasing number of H4C4S adsorption/desorption cycles, the uptake of molecular thiophene decreases as well as the H2 and H2S production ceases. Thus, silica-supported sulfided Mo clusters are less reactive than metallic clusters. The poisoned catalyst can be partially reactivated by annealing in O2. However, Mo oxides also appear to form, which passivate the catalyst further. On the other hand, while annealing a used catalyst in H/H2, it is poisoned even more (i.e., the S AES signal increases). By means of adsorption transients, the initial adsorption probability, S0, of C4H4S has been determined. At thermal impact energies (Ei = 0.04 eV), S0 for molecular adsorption amounts to 0.43 ± 0.03 for a surface temperature of 200 K. S0 increases with Mo cluster size, obeying the capture zone model. The temperature dependence of S0(Ts) consists of two regions consistent with molecular adsorption of thiophene at low temperatures and its decomposition above 250 K. Fitting S0(Ts) curves allows one to determine the bond activation energy for the first elementary decomposition step of C4H4S, which amounts to (79 ± 2) kJ/mol and (52 ± 4) kJ/mol for small and large Mo clusters, respectively. Thus, larger clusters are more active for decomposing C4H4S than are smaller clusters.  相似文献   

5.
We have successfully synthesized Ce based oxypnictide superconductors with fluorine doping (CeO1?xFxFeAs) by a two step solid state reaction method. Detailed XRD and EDX confirm the crystal structure and chemical compositions. We observe that an extremely high Hc2(0) of 94 T can be achieved in the x = 0.1 composition. This increase in Hc2(0) is accompanied by a decrease in transition temperature (38.4 K in x = 0.1 composition) from 42.5 K for the x = 0.2 phase. The in-plane Ginzburg–Landau coherence length is estimated to be ~27 Å at x = 0.2 suggesting a moderate anisotropy in this class of superconductors. The Seebeck coefficient confirms the majority carrier to be electrons and strong dominance of electron–electron correlations in this multiband superconductor.  相似文献   

6.
The solid solutions BaAl1−xSi1+x (0  x  0.5) were prepared. The compound with the stoichiometric composition (x = 0) did not show superconductivity as reported by other investigators, but the solid solutions with x > 0 became superconductors with a transition temperature Tc = 2.8 K. The comparison of the lattice parameters with those of the other isotypic ternary superconductors MAlSi (M = Ca, Sr) suggested that the superconductivity could be related to the lattice parameter within the (AlSi) plane rather than the interlayer spacing. The band structures near the Fermi level of MAlSi (M = Ca, Sr, Ba) were measured using soft X-ray photoelectron spectroscopy, which were in good agreement with the calculated ones, confirming that the contribution of the d orbitals of the alkaline-earth metals were predominant in the conduction bands.  相似文献   

7.
《Solid State Ionics》2006,177(1-2):29-35
Microstructure and local structure of spinel LiNixMn2  xO4 (x = 0, 0.1 and 0.2) were studied using X-ray diffraction (XRD) and a combination of X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge spectroscopy (XANES) and Raman scattering with the aim of getting a clear picture of the local structure of the materials responsible for the structural stability of LiNixMn2  xO4. XRD study showed that Ni substitution caused the changes of the materials’ microstructure from the view of the lattice parameter, mean crystallite size, and microstrain. XPS and XANES studies showed the Ni oxidation state in LiNixMn2  xO4 was larger than + 2, and the Mn oxidation state increased with Ni substitution. The decrease of the intensity of the 1s → 4pz shakedown transition on the XANES spectra indicated that Ni substitution suppressed the tetragonal distortion of the [MnO6] octahedron. The Mn(Ni)–O bond in LiNixMn2  xO4, which is stronger than the Mn–O bond in LiMn2O4 was responsible for the blue shift of the A1g Raman mode and could enhance the structural stability of the [Mn(Ni)O6] octahedron.  相似文献   

8.
The thermal decomposition of dimethyl methylphosphonate (DMMP) on crystalline ceria thin films grown on Ru(0 0 0 1) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and infrared absorption reflection spectroscopy (IRAS). TPD experiments show that methanol and formaldehyde desorb as the two main products at 575 K, while water, formaldehyde and CO are produced above 800 K. IRAS studies demonstrate that DMMP adsorbs via the phosphoryl oxygen at 200 K, but the PO bond converts to a bridging OPO species at 300 K. DMMP decomposition initially occurs via POCH3 bond scission to form methyl methylphosphonate (MMP) and methyl phosphonate (MP) between 300 and 500 K; XPS and IRAS data are consistent with a methoxy intermediate on the surface at these temperatures. The more stable PCH3 bonds remain intact up to 700 K, and the only surface intermediate at higher temperatures is believed to be POx. Although the presence of POx decreases activity for DMMP decomposition, some activity on the ceria surface remains even after 7 cycles of adsorption and reaction. The ceria films become reduced by multiple DMMP adsorption-reaction cycles, with the Ce+4 content dropping to 30% after seven cycles. Investigations of DMMP reaction on reduced ceria surfaces show that CO and H2 are produced in addition to methanol and formaldehyde. Furthermore, DMMP decomposition activity on the reduced ceria films is almost completely inhibited after only 3 adsorption-reaction cycles. Similarities between DMMP and methanol chemistry on the ceria films suggest that methoxy is a key surface intermediate in both reactions.  相似文献   

9.
《Solid State Ionics》2006,177(19-25):1779-1783
Ceramic perovskite solid solutions (La0.9Sr0.1)[(Ga1−xMx)0.8Mg0.2]O3−y, 0  x  0.5, M = Fe, Ni, Cr (systems I–III) and brownmillerite solid solutions (La0.2Sr1.8)[Ga(Fe1−xMgx)]O5−z, 0  x  0.5, (system IV) have been prepared. The samples have been studied by X-ray diffraction and electron microscopy methods, dielectric spectroscopy and permeability measurements. The correlation between the composition, unit cell parameter changes, electrical transport and oxygen permeation properties has been revealed. Introduction of transition metals (Fe, Ni, or Cr), substituting for gallium, ensures the enhancement of the electronic constituent of the conductivity in the perovskite systems I–III. Stabilization of the transition metal high valence states 4+ or 5+ has been suggested for compositions I and III. This leads to a unit cell volume contraction and provides a decrease in the concentration of oxygen vacancies. The oxygen permeability reaches its maximum values in compositions I–III with x  0.3. On the contrary, increasing concentration of the doping element with lower valence state (magnesium), substituting for iron, determines the expansion of the brownmillerite unit cell volume and provides an increase of the oxygen vacancy concentration, which in turn, favors the enhancement of oxygen permeability of composition IV.  相似文献   

10.
E. Demirci  A. Winkler 《Surface science》2010,604(5-6):609-616
Co-adsorption of hydrogen and CO on Cu(1 1 0) and on a bimetallic Ni/Cu(1 1 0) surface was studied by thermal desorption spectroscopy. Hydrogen was exposed in atomic form as generated in a hot tungsten tube. The Ni/Cu surface alloy was prepared by physical vapor deposition of nickel. It turned out that extended exposure of atomic hydrogen leads not only to adsorption at surface and sub-surface sites, but also to a roughening of the Cu(1 1 0) surface, which results in a decrease of the desorption temperature for surface hydrogen. Exposure of a CO saturated Cu(1 1 0) surface to atomic H leads to a removal of the more strongly bonded on-top CO (α1 peak) only, whereas the more weakly adsorbed CO molecules in the pseudo threefold hollow sites (α2 peak) are hardly influenced. No reaction between CO and H could be observed. The modification of the Cu(1 1 0) surface with Ni has a strong influence on CO adsorption, leading to three new, distinct desorption peaks, but has little influence on hydrogen desorption. Co-adsorption of H and CO on the Ni/Cu(1 1 0) bimetallic surface leads to desorption of CO and H2 in the same temperature regime, but again no reaction between the two species is observed.  相似文献   

11.
The influence of adsorbed S on surface segregation in CuxPd1 ? x alloys (S/CuxPd1 ? x) was characterized over a wide range of bulk alloy compositions (x = 0.05 to 0.95) using high-throughput Composition Spread Alloy Film (CSAF) sample libraries. Top-surface and near-surface compositions of the CSAFs were measured as functions of bulk Cu composition, x, and temperature using spatially resolved low energy ion scattering spectroscopy (LEISS) and X-ray photoemission spectroscopy (XPS). Preferential segregation of Cu to the top-surface of the S/CuxPd1 ? x CSAF was observed at all bulk compositions, x, but the extent of Cu segregation to the S/CuxPd1 ? x surface was lower than the Cu segregation to the surface of a clean CuxPd1 ? x CSAF, clear evidence of an S-induced “segregation reversal.” The Langmuir–McLean formulation of the Gibbs isotherm was used to estimate the enthalpy and entropy of Cu segregation to the top-surface, ΔHseg(x) and ΔSseg(x), at saturation sulfur coverages. While Cu segregation to the top-surface of the clean CuxPd1 ? x is exothermic (ΔHseg < 0) for all bulk Cu compositions, it is endothermic (ΔHseg > 0) for S/CuxPd1 ? x. Segregation to the S/CuxPd1 ? x surface is driven by entropy. Changes in segregation patterns that occur upon adsorption of S onto CuxPd1 ? x appear to be related to formation of energetically favored PdS bonds at the surface, which counterbalance the enthalpic driving forces for Cu segregation to the clean surface.  相似文献   

12.
In this report, SrTi(1 ? x)Fe(x)O(3 ? δ) photocatalyst powder was synthesized by a high temperature solid state reaction method. The morphology, crystalline structures of obtained samples, was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), respectively. The electronic properties and local structure of the perovskite STFx (0  x  1) systems have been probed by extended X-ray absorption fine structure (EXAFS) spectroscopy. The effects of iron doping level x (x = 0–1) on the crystal structure and chemical state of the STFx have been investigated by X-ray photoelectron spectroscopy and the valence band edges for electronic band gaps were obtained for STFx by ultraviolet photoelectron spectroscopy (UPS). A single cubic perovskite phase of STFx oxide was successfully obtained at 1200 °C for 24 h by the solid state reaction method. The XPS results showed that the iron present in the STFx perovskite structure is composed of a mixture of Fe3+ and Fe4+ (SrTi(1 ? x)[Fe3+, Fe4+](x)O(3 ? δ)). When the content x of iron doping was increased, the amount of Fe3+ and Fe4+ increased significantly and the oxygen lattice decreased on the surface of STFx oxide. The UPS data has confirmed that with more substitution of iron, the position of the valence band decreased.  相似文献   

13.
Nanopowders of composition Ce0.9(Eu1 ? xSrx)0.1O2 ? δ (x = 0, 0.1, 0.3, 0.5, and 0.7) were prepared by the Pechini method. The microstructure and properties of powders and sintered ceramics are discussed in this paper. X-ray diffraction (XRD) and Raman spectroscopy revealed that all powders calcined at 550 °C were single phase, with the cubic fluorite-type structure. The good sintering properties of the synthesized nanopowders allowed us to obtain dense ceramics (> 96% theoretical density). Dense ceramics with density higher than 96% of the theoretical value were obtained without the need of sintering aid. The morphology of the sintered ceramics was evidenced by scanning electron microscopy (SEM). The ionic conductivities of doped and co-doped ceria ceramics were investigated as a function of temperature by using AC impedance spectroscopy in the temperature range 250–800 °C. Impedance spectra indicate a significant diminution of grain boundary resistance after partial substitution of Eu with Sr in europia-doped ceria sample, especially in the low and intermediate-temperature range. The best conductivity was evidenced for the Ce0.9Eu0.09Sr0.01O2 ? δ composition.  相似文献   

14.
The methanol decomposition and oxidation on a Pd(111) single crystal have been investigated in situ using ambient-pressure X-ray photoelectron spectroscopy (XPS) and mass-spectrometry (MS) in the temperature range of 300–600 K. It was found that even in the oxygen presence the methanol decomposition on palladium proceeds through two competitive routes: fast dehydrogenation to CO and H2, and slow decomposition of methanol via the C–O bond scission. The rate of the second route is significant even in the millibar pressure range, which leads to a blocking of the palladium surface by carbon and to a prevention of the further methanol conversion. As a result, no gas phase products of methanol decomposition were detected by mass-spectrometry at 0.1 mbar CH3OH in the whole temperature range. The methanol C–O bond scission produces CHx species, which fast dehydrogenate to atomic carbon even at room temperature and further partially dissolve in the palladium bulk at 400 K with the formation of the PdCx phase. According to in situ XPS data, the PdCx phase forms even in the oxygen excess. The application of an in situ XPS–MS technique unambiguously shows a good correlation between a decrease in the surface concentration of all carbon-containing species and the rate of methanol conversion. Since these carbon species have a high reactivity towards oxygen, heating of Pd(111) above 450 K in a methanol–oxygen mixture yields CO, CO2, and water. The product distribution indicates that the main route of methanol conversion is the dehydrogenation of methanol to CO and hydrogen. However, under the experimental conditions used, hydrogen is completely oxidized to water, while CO is partially oxidized to CO2. No palladium oxide was detected by XPS in these conditions.  相似文献   

15.
Infrared (IR) transmission spectra in the range from 4000 to 400 cm?1 have been measured at ambient temperature for the prepared, (Ge22Se14Te64)100?xIx, glasses where x = 0, 4, 6, 8 and 10 at.%. The effects of both iodine content and the annealing of glasses at different temperatures on the transmittance and observed absorption peaks have been evaluated. Scanning electron microscope (SEM) micrographs were performed to insure the effect of annealing on the obtained IR transmission spectra.  相似文献   

16.
Nonstoichiometric variation of oxygen content in La2 ? xSrxNiO4 + δ (x = 0, 0.1, 0.2, 0.3, 0.4) and decomposition P(O2) were determined by means of high temperature gravimetry and coulometric titration. The measurements were carried out in the temperature range between 873 and 1173 K and the P(O2) range between 10? 20 and 1 bar. La2 ? xSrxNiO4 + δ showed the oxygen excess and the oxygen deficient compositions depending on P(O2), temperature, and the Sr content. The value of partial molar enthalpy of oxygen approaches zero as δ increases in the oxygen excess region, which indicate that the interstitial oxygen formation reaction is suppressed as δ increase. The relationship between δ and logP(O2) were analyzed by two types of defect equilibrium models. One is a localized electron model, and the other is a delocalized electron model. Both models can well explain the oxygen nonstoichiometry of La2 ? xSrxNiO4 + δ with a regular solution approximation.  相似文献   

17.
A sonochemical method for direct preparation of nanowires of SbS1?xSexI solid solution has been established. The SbS1?xSexI gel was synthesized using elemental Sb, S, Se and I in the presence of ethanol under ultrasonic irradiation (35 kHz, 2 W/cm2) at 50 °C for 2 h. The product was characterized by using techniques such as powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray analysis, selected area electron diffraction, and optical diffuse reflection spectroscopy. The SEM and HRTEM investigations exhibit that the as-prepared samples are made up of large quantity nanowires with lateral dimensions of about 10–50 nm and lengths reaching up to several micrometers and single-crystalline in nature. The increase of molar composition of Se affects linear decrease of the indirect forbidden optical energy gap as well as the distance between (121) planes of the SbS1?xSexI nanowires.  相似文献   

18.
Hierarchical structured Co-doped SnO2 nanoparticles are prepared by a low temperature hydrothermal process. The structural and surface morphologies of the SnO2 and Sn1?xCoxO2 nanoparticles are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The Sn1?xCoxO2 nanoparticles form with a tetragonal rutile structure during the hydrothermal process without further calcination. The pseudocapacitance behavior of the Sn1?xCoxO2 nanoparticles is characterized by cyclic voltammetry (CV) in 1.0 M H2SO4 electrolyte. The specific capacitance (SC) is found to increase with an increase in cobalt content. A maximum SC of 840 F g?1 is obtained for a Sn0.96Co0.04O2 composite at a 10 mV s?1 scan rate.  相似文献   

19.
《Solid State Ionics》2006,177(7-8):727-732
Three different formulations of 14 Li2O·9 Al2O3·38 TiO2·39 P2O5 composition (LATP) were melted, cast and crystallized. As-cast glass was characterized by differential scanning calorimetry which exhibited a distinct and strong exothermic peak around 680 °C. The peak was attributed to the crystallization of the glass. The crystallized glass (glass-ceramic) was further characterized by X-ray diffraction which showed the existence of Li1 + xAlxTi2  x(PO4)3 (x  0.3)as the primary phase mixed with a small concentration of AlPO4 and an unidentified phase. The scanning electron micrographs revealed the presence of the primary crystalline phase with an average grain size of 1 μm. Electrical characterization by AC impedance spectroscopy revealed grain and grain boundary contributions to the total conductivity. The effect of specimen processing parameters on conductivity is also investigated and discussed.  相似文献   

20.
Composition Bi4V2−xSrxO11−δ (0.05≤x≤0.20) is synthesized by melt quench technique followed by heat treatment at 800 °C for 12 h. These compounds are characterised by X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV–visible spectroscopy, impedance spectroscopy and scanning electron microscopy. X-ray diffraction patterns of all the samples show γ-phase stabilization at room temperature except x=0.05 heat treated sample. The optical band gap of all the samples is observed in semiconducting range. The lowest and the highest optical band gap is 2.39 eV and 2.57 eV for x=0.10 heat treated and x=0.20 quenched samples, respectively. The highest value of dielectric constant is obtained ~107 with very low dielectric loss for x=0.15 and 0.20 samples at ~350 °C and below 10 Hz. The grain size increases with dopant concentration leads to increase the dielectric constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号