首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The equilibrium concentrations of all reaction products emerging from the hydrolysis ofN-bromo compounds in the presence of bromide and thereby also the hydrolysis constants (K 1) have been calculated from the absorbance at 392.8 nm, thepH-value and the initial concentrations of theN-bromo compound and the bromide. The following compounds have been investigated:N-bromo-succinimide:K 1=2.2·10–6, 1,3-dibromo-5,5-dimethylhydantoin:K 1=1.7·10–5,N-bromoacetamide:K 1=1.8·10–6,N-bromo-monochloroacetamide: 5.2·10–6,N-bromo-dichloroacetamide:K 1=8.9·10–6 andN-bromo-trichloroacetamide:K 1=1.8·10–5. The precision of the method, which is mainly suited for weak hydrolizingN-bromocompounds (K 1<10–4) are discussed and the overall error of the calculated values was found to be in the range of ±5–12%. The reactivities in aqueous solution of the most frequently usedN-bromo compounds are compared by means of the calculated HOBr equilibrium concentrations. The differences to be expected on the basis of the latters are at concentrations >10–5 mol/l rather great, while they can be neglected in very dilute solutions (-10–6 mol/l).
  相似文献   

2.
Multiple Attenuated Total Reflectance (MATR) IR spectra of solutions of HCl in 1-methyl-2-pyrrolidone (N-MP) (0–43.4 % HCl) were studied in the 900–4000 cm–1 range. Spectra were recorded for theN-MP-HCl-1,1,2,2-tetrachloroethane (TCE) ternary system at a TCE N-MP ratio of 1 1. Depending on the ratio between the components, complexes of the compositionN-MP · HCl (C-1),N-MP · 2HCl (C-2), and 2N-MP · HCl (C-3) are formed in the system. Complex C-1 has a quasiionic structure, (CH2)3N(Me)CO...H...Cl, formed by a strong quasisymmetrical H-bond between the carbonyl O atom and the Cl atom. The addition of anN-MP molecule to complex C-1 yields complex C-3, in which the quasiionic character of the bond betweenN-MP and HCl is retained. When excess HCl is present, the quasiionic structure is destroyed, theN-MP molecule is protonated, and the Cl anion interacts with HCl to give an ion with a strong symmetrical H bond (Cl...H...Cl). Complex C-2 is an ion pair.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1757–1763, September, 1995.This work was carried out with financial support of the Russian Foundation for Basic Research (Project No. 93-03-18356).  相似文献   

3.
Uranium(VI) reacts withN-phenylcinnamohydroxamic acid to form an orange-yellow complex in the pH range 5.5–8.5. The orange-yellow complex, having the composition of 12 (metal:ligand), is quantitatively extractable into ethyl acetate. The spectrum of the complex exhibits a maximum absorption at 400 nm with a molar absorptivity of 6500 M–1·cm–1. The coloured system obeys Beer's law in the concentration range 2–40g·ml–1 of uranium(VI). The photometric sensitivity of the colour reaction is 0.037 g·cm–2 of uranium(VI). Most of the common ions do not interfere and the method has been found to be simple, precise, and free from the rigid control of experimental conditions. The method has been applied to the determination of uranium in synthetic matrices and potable water.  相似文献   

4.
An extraction and spectrophotometric method for determination of trace amounts of uranium in phosphate fertilizers is described. It is based on the extraction of uranium with trioctylphosphine oxide in benzene and the spectrophotometric determination of uranium with Arsenazo III in buffer-alcoholic medium. The maximum absorbance occurs at 655 nm with a molar absorptivity of 1.2·104 l·mol–1·cm–1. Beer's law is obeyed over the range 0.6–15.0 g·ml–1 of uranium(VI). The proposed method has been applied successfully to the analysis of phosphate fertilizers with phosphate concentrations of 45% P2O5.  相似文献   

5.
Triton X-100, a non-ionic surfactant, has been used to sensitize the reaction of 5-(2-carboxyphenyl)azo-8-quinolinol with uranium in aqueous medium at pH 5.2–6.1 to form a wine red coloured complex. The micellar sensitization results in two and a half-times enhanced molar absorptivity enabling the determination of uranium in rock samples at ppm level, stability of the complex enhanced from 4 hours to at least 72 hours. Extraction of the complex is avoided making the procedure simple, rapid and easy in operation. The molar absorptivity and Sandell's sensitivity of the complex are 1.50·104l·mol–1·cm–1 and 15.9 ng·cm–2, respectively, at max=568 nm. Beer's law is obeyed over the range 0–3.3 g·ml–1 of uranium. An amount as low as 0.19 g·ml–1 of uranium could be determined satisfactorily within a relative standard deviation of ±1.3%. The limits of determination and practical quantitation are 0.29 and 1.80 ppm, respectively. The method was applied to the determination of uranium in soil, stream sediment and rock samples.  相似文献   

6.
Summary Spectrophotometric Determination of Uranium in Sea-Water with Thiocyanate and Rhodamine B In the presence of a large excess of thiocyanate uranium(VI) forms a violet colour with Rhodamine B. The complex can be stabilized by addition of poly (vinyl alcohol). The calibration graph for measurement at 600 nm is linear in the range 0.5–10g of uranium per 25ml, the molar absorptivity being 3.56×1051-mole–1·cm–1. The effect of foreign ions has been studied and the method can be applied to the determination of uranium in sea-water, with reliable results. Uranium is preconcentrated from sea-water by a flotation procedure with toluene in presence of benzoate and Safranine T, with nitrilotriacetic acid as masking agent. The method is highly selective for uranium, with a recovery of 97.9–99.2%.  相似文献   

7.
The kinetic parameters of the thermal decomposition of several pairs of 1(2)-R-5-R-disubstituted tetrazoles have been determined using the manometric method. The isomers differ only by the position of the substituents linked with the heterocyclic nitrogen atom. The activation entropies are equal to ca. +8 cal mol–1 K–1, the activation energies range from 39 to 48 kcal mol–1. A linear correlation between the logarithms of the rate constants of decomposition of the isomers has been established. The limiting stages of the stepwise mechanism of the monomolecular decomposition, which determines the experimental rates of nitrogen evolution, include the reversible formation followed by decomposition of intermediate azidoazomethines in the case of 1,5-disubstituted tetrazoles and azodiazo compounds for isomeric 2,5-disubstituted tetrazoles. The enthalpies of formation of R(N3)C=NR (R = Me, Ph), C2H3(N3)C=NMe and increments f H°[Cd–(C)(N3)], f H°[Cd-(Cb)(N3)], and f H°[Cd–(Cd)(N3)] have been estimated.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2209–2215, September, 1996.  相似文献   

8.
Summary The reducing fusion gas extraction method has been used for the determination of nitrogen in uranium metal and uranium dioxide reference materials at levels of about 10–15g·g–1. It has been found that when extracting at temperatures above 2700° C the use of a platinum flux is no longer necessary. Pure nitrogen and nitrogen-helium mixtures were used for calibrating the detection unit in the range of 1.5–670 g. The calibration of the extraction was performed with metallic reference materials in the range of 8–331 g N2 content.
Bestimmung von Stickstoff in Uran und Uranoxid durch Hochtemperatur-Gasextraktion
Zusammenfassung Die Gasextraktion aus reduzierender Schmelze wurde zur Stickstoffbestimmung in Uranmetall- und Urandioxid-Referenzmaterialien bei Gehalten von 10–15 g·g–1 angewendet. Bei Temperaturen über 2700° C ist kein Platinbad mehr erforderlich. Zur Eichung der Detektionseinheit im Bereich von 1,5–670 g wurden reiner Stickstoff oder Stickstoff-Helium-Mischungen benutzt. Zur Eichung der Extraktion wurden metallische Referenzmaterialien mit (8–331g) N2 eingesetzt.
  相似文献   

9.
It is shown by pulse radiolysis that in aqueous solutions of hydrazine containing oxygen the radical N2H3 reduces oxygen to O2 at pH > 7 (k 3·109 dm3· mole–1·sec–1), while this reaction does not occur for the protonated form N2H4 + at pH < 7 (k, 5·106 dm3·mole–1·sec–1). The rate constants for the disappearance of O2 have been determined in the pH range from 4 to 12. Rate constants have been calculated for the reaction of O with N2H4 [k=(1.6 ±0.2)·109 dm3·mole–1·sec–1] and of O3with N2H4 [k=(1.2 ±0.2)·106 dm3· mole–1·sec–1].Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 341–345, February, 1991.  相似文献   

10.
Summary Cobalt(II) gives a deep blue colour with nicotinamidoxime in alkaline aqueous-ethylalcoholic medium which has been used with advantage for the spectrophotometric determination of this metal. The optimum pH for the development of colour is 9.8–11.3 in aqueous-alcoholic (40% v./v.) medium in presence of a large excess of the reagent, at 15–40°C. The colour intensity is measured at 580 m,. Sensitivity is 0.01 g cobalt per cm2, while visual identification limit is 0.5 g cobalt per ml (12·106). Beer's law is obeyed in the range of 0.2–20 ppm of the metal, with an optimum range of 2–16 ppm. The colour is stable for about half an hour in the pN range of 9.8–11.3 and at least one hour in the range of 10.5 to 11.0. On account of the high pN and alcoholic medium used, most of the cations and anions interfere and, hence, must be removed.Part I: See Z. anal. Chem. 168, 326 (1959).  相似文献   

11.
The static magnetic susceptibility of Fe(III) complex [Fe13O4F24(OCH3)12]5– was measured in the temperature range 2–300 K. The structure of the complex consists of four triangular Fe3 fragments interacting with a central Fe atom. By disregarding weak exchange interactions through F bridges, an analytical solution of the exchange Hamiltonian was obtained with Nf 1.3 × 1010 levels. This made it possible to perform quantitative interpretation of the temperature dependence of the magnetic susceptibility. The obtained exchange parameters of the best approximation are –2J 1 = 43 cm–1, –2J 2 30 cm–1. The ratio J 2/J 1 0.70 suggests that the Fe13 ground state has the spin of the ground state 23/2 or 15/2.  相似文献   

12.
Summary The displacement of chloride ligands from -cis-chloro-aquoethylenediamine-N,N-diacetatocobalt(III) in nonacidic aqueous solutions was followed conductimetrically at 30–45° and the products of aquation were characterised by conductance, spectral and ion-exchange techniques. The rate constants for aquation in aqueous media and in 1 : 4 v : v mixed solvents at 25° are: 4.0 × 10–5 s–1 in H2O, 2.71 × 10–5 s–1 in MeOH : H2O, 2.74 × 10–5 s–1 in EtOH: H2,O and 2.58 × 10–5 s–1 n in Me2CO : H2O. The corresponding H&#x002A; and S&#x002A; values have also been evaluated. Solvent polarity has a marked influence on the rate of chloride ion release. The aquation rate constants and the activation parameters have been correlated with solvent parameters,e.g. D, Y-values, Dimroth's ET and Kosower's Z-values and, based on these correlations, a dissociative interchange (Id) mechanism is proposed rather than dissociative as observed for some other cobalt(III) complexes.Senior author.  相似文献   

13.
The kinetics of oxidation of CoIIHEDTA {HEDTA = N-(2-hydroxyethyl)ethylenediamine-N,N,N-triacetic acid} by vanadate ion have been studied in aqueous acid in the pH range 0.75–5.4 at 43–57 °C. The reaction exhibits second-order kinetics; first-order in each of the reactants. The reaction rate is a maximum at pH = 2.1. A mechanism is proposed in which the species [CoIIHEDTA(H2O)] and VO2 + react to form an intermediate which decompose slowly to give pentadentate CoIIIHEDTA(H2O) and VIV as final products. The rate law was derived and the activation parameters calculated: H* = 26.96 kJ mol–1 and S* = –311.08 JK–1 mol–1.  相似文献   

14.
4-(21-Thiazolylazo) resacetophenone oxime forms a pink colored soluble complex with uranium(VI) in buffer solutions of pH 6.0. The colored complex has a maximum absorbance at the wavelength 572 nm and the color is stable for about 48 h. The system obeys Beer's law over the concentration range 0.2–6.0 g of uranium cm–3. The molar absorptivity and the Sandell sensitivity of the complex are 6.2×104 dm3.mol–1.cm–1 and 0.0038 g cm–2, respectively. Effect of various diversions has been studied and the method was successfully applied for the determination of uranium in rock samples.  相似文献   

15.
A new class of chelating polymer adsorbents was synthesized on the basis of aminopolystyrene azo compounds and various para-substituted anilines. Physicochemical and analytical properties of adsorbents and their ionic associates with the [AuCl4] anion were studied. Correlations between the ionization constants of amino group (pK NH 2) and the Hammett electronic constant (n) were found. A linear correlation between the charge on the amino group nitrogen atom and the (n) value was revealed on the basis of the results of quantum-chemical calculations. A sorption-spectroscopic method was developed for determining gold in ores and rocks. The method was verified by analyzing certified reference samples of ores and rocks in the gold concentration range between n × 10–3 and n × 10–6% RSD = 5%.Translated from Zhurnal Analiticheskoi Khimii, Vol. 60, No. 3, 2005, pp. 264–270.Original Russian Text Copyright © 2005 by Basargin, Zueva, Rozovskii, Pashchenko.  相似文献   

16.
A sensitive, selective and simple preconcentration method for ultra-trace gold determination has been developed that uses naphthalene–methyltrioctyl ammonium chloride (Aliquat 336s) as an adsorbent. Gold, in the form of AuCl4, was retained by the adsorbent in the column at a flow rate of 1 ml min–1. After filtration, the solid mass consisting of the gold complex and naphthalene was dissolved out of the column with 5 ml of N,N-dimethylformamide (DMF), and the metal was then determined by atomic absorption spectrometry. In the initial solution, the calibration graph of absorbance versus gold concentration was found to be linear in the range 0.5–150 ng ml–1 Au(III) with r=0.997 (n =9), and the 3 s detection limit was 0.428 ng ml–1. The relative standard deviation for eight replicate measurements of 20 g of gold was 2.14%. Preconcentration factors of 390 and 650 were achieved using 5 ml and 3 ml of DMF, respectively. The proposed method was successfully applied to the determination of gold in wastewater, processed pool water, slurry pool water, and raw well-water from the Moteh gold mine, and synthetic samples.  相似文献   

17.
The effects of anti-symmetric electrolytes (CaCl2, Ca(SCN)2, MgCl2, and/or Mg(SCN)2) and pH on the phase behavior, the -potential, the hydrodynamic diameter and the surface charge density of an oil-inwater type (O/W-type) microemulsion formed in solutions of an amphoteric surfactant (N ,N -dimethyl-N -lauroyllysine, DMLL)/n-octane/1-pentanol/brine have been examined. The formation of the microemulsion in the presence of CaCl2 and/or Ca(SCN)2 is of Winsor-type with an increase in the concentration of 1-pentanol. Particularly, microemulsion is not formed by the addition of Ca(SCN)2 in a pH region less than 2.6. The -potential and the surface charge density of the microemulsion in the presence of CaCl2 decrease with an increase in pH and show slightly positive values in the isoelectric region (pH 5-7), while, in the presence of Ca(SCN)2, the -potential and the surface charge density show negative values in the same region at which the net charge of DMLL molecules becomes almost zero. The hydrodynamic diameters in the presence of CaCl2 show a maximum value around pH 2.5, whereas, in the presence of Ca(SCN)2, the minimum value is around pH 5.5. Similar tendencies are recognized in results for the -potential, the hydrodynamic diameter and the surface charge density of the O/W-type microemulsion in the presence of MgCl2 and Mg(SCN)2. A new formula to estimate the binding constants (K) of Ca2+, Mg2+, Cl, and SCN to the hydrophilic groups in DMLL molecules and the adsorption density of DMLL molecules on the oil/water interface (N) in the presence of antisymmetric electrolytes has been derived.K for Ca2+, Mg2+, Cl, and SCN was found to beK Ca=0.12M–1,K Mg=0.14 M–1,K Cl=0.0084±0.0016 M–1, respectively.N for DMLL molecules in the presence of CaCl2, Ca(SCN)2, MgCl2 and/or Mg(SCN)2 was found to be 0.50 nm–2, 0.38 nm–2, 0.44 nm–2, and 0.47 nm–2, respectively; and the surfactant (DMLL) numbers per O/W-type microemulsion droplet change from a few hundreds to a few thousands with changing pH. The larger the hydrodynamic diameter of the O/W-type microemulsion, the greater the number of DMLL molecules adsorbed on the O/W-type microemulsion surfaces.  相似文献   

18.
Summary A differential pulse polarographic method for the determination of iron employing the catalytic maximum wave has been studied. A well-defined differential pulse polarographic peak for iron(III) in Britton-Robinson buffer solution containing 50 mol/l N-(2-hydroxyethyl) ethylenediamine N,N,N-triacetic acid (HEDTA) and 5 mmol/l KBrO3 is observed in the potential range from +0.2 to –0.3 V vs. SCE. The peak current is very large compared to that of the Fe(III)/EDTA complex, being proportional to the concentration of iron(III) between 1.00×10–8 and 3.58×10–6 mol/l under optimum conditions. The relative standard deviations for 3.58×10–7 mol/l and 1.79×10–6 mol/l iron(III) were 1.38 and 0.54%, respectively (n=5), and the calculated detection limit was 5.2×10–9 mol/l iron(III). The method has been applied to the determination of iron in fresh snow and rain waters.
Spurenbestimmung von Eisen mit Hilfe der katalytischen Maximumsstufe in der Differential-Puls-Polarographie
Zusammenfassung Das Verfahren beruht auf der Tatsache, daß in Britton-Robinson-Puffer (mit 50 mol/l HEDTA und 5 mmol/l KBrO3) im Potentialbereich von +0,2 bis –0,3 V gegen SKE ein gut definierter puls-polarographischer Peak für Eisen(III) auftritt. Der Peakstrom ist im Vergleich zu dem des Fe(III)/EDTA-Komplexes sehr groß und ist unter optimalen Bedingungen im Konzentrationsbereich von 1,00·10–8 bis 3,58·10–6 mol/l der Eisen(III)-Konzentration proportional. Die relative Standardabweichung beträgt 1,38% bzw. 0,54% (n=5) für 3,58·10–7 mol/l bzw. 1,79·10–6 mol/l Fe(III). Die berechnete Nachweisgrenze liegt bei 5,2·10–9 mol/l Fe(III). Das Verfahren wurde zur Eisenbestimmung in Schnee- und Regenwasser eingesetzt.


This work was supported in part by a Grant-in-Aid for Scientific Research from Hokkaido-prefecture, 1982.  相似文献   

19.
A simple, rapid and sensitive spectrophotometric method is described for the quantitative determination ofN-substituted phenothiazines. The method depends on the formation of a stable phenothiazine free radical cation by the use ofN-bromophthalimide as oxidising agent in a strong acid medium (methanol/ sulphuric acid 1 1 v/v). The produced red or violet color possesses absorption maximum range from 500 to 530 nm. A linear relationship exists between the absorbance at (max) and concentration in the range 5 to 40 g ml–1 with apparent molar absorptivities range from 6 × 103 to 12 × 1031 mol–1 cm–1. The color is developed instantaneously for all the studied phenothiazines except for thioproperazine mesylate, trifluoperazine dihydrochloride and prochlorperazine mesylate that require 25, 15 and 25 min, respectively, for complete reaction. The developed colors are stable over 24 h. The average % recovery is 99.85±0.61 to 100.28±0.95. The method was applied successfully to the microdetermination of chlorpromazine HCl, promethazine HCl, pericyazine, thioproperazine mesylate, perphenazine, prochlorperazine mesylate, trimeprazine tartrate and trifluoperazine 2HCl either in pure form or incorporated in their pharmaceutical preparations. The results of analysis are in good agreement with those of the official B.P. 1988 and USP XXII.  相似文献   

20.
Column preconcentration methods have been established for the spectrophotometric determination of trace nitrite with sulfanilic acid (SA) orp-aminoacetophenone (AAP) as the diazotizable aromatic amine andN, N-dimethylaniline (DMA) or 1-aminonaphthalene (AN) as the coupling agent, using differention-pairs co-precipitated with biphenyl. Nitrite ion reacts with SA in the pH range 2.0–3.0 and AAP in the pH range 1.7–3.0 in HCl medium to form water-soluble colourless diazonium cations. These cations are subsequently coupled with DMA in the pH range 3.7–6.1 for the SA-DMA system and AN in the pH range 1.7–2.3 for the AAP-AN system to be retained on microcrystalline biphenyl packed in a column. The solid mass is dissolved out from the column with 5 ml of DMF and the absorbance is measured by a spectrophotometer at 420 nm for the SA-DMA system and at 517 nm for the AAP-AN system. The calibration was linear over the concentration ranges 0.3–6.0 g of nitrite in 5 ml of DMF solution (i.e., 0.02–0.40 g/ml in the sample solution) for the SA-DMA system and 0.5–7.0 g of nitrite in 5 ml of DMF solution (i.e., 0.03–0.47 g/ml in the sample solution) for the AAP-AN system. The molar absorptivity and Sandell's sensitivity were respectively 2.63 × 104lmol–1cm–1 and 1.75 × 10–3 g cm–2 for SA-DMA and 3.28 × 104lmol–1 cm–1 and 1.40 × 10–3 g cm–2 for AAP-AN. The concentration factors were 4 and 16 for SA-DMA and AAP-AN, respectively. The detection limits were 0.0138 and 0.0175 g/ml NO2 for SA-DMA and AAP-AN, respectively. Seven replicate determinations of a solution containing 3.5 g of nitrite gave mean absorbances of 0.410 and 0.500 with relative standard deviations of 0.51 and 0.55% for SA-DMA and AAP-AN, respectively. Interference from various foreign ions has been studied and the methods have been applied to the determination of nitrite in environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号