首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Proton transfer (PT) and excited‐state PT process are proposed to account for the fluorescent sensing mechanism of a cyanide chemosensor, 8‐formyl‐7‐hydroxycoumarin. The time‐dependent density functional theory method has been applied to investigate the ground and the first singlet excited electronic states of this chemosensor as well as its nucleophilic addition product with cyanide, with a view to monitoring their geometries and spectrophotometrical properties. The present theoretical study indicates that phenol proton of the chemosensor transfers to the formyl group along the intramolecular hydrogen bond in the first singlet excited state. Correspondingly, the nucleophilic addition product undergoes a PT process in the ground state, and shows a similar structure in the first singlet excited state. This could explain the observed strong fluorescence upon the addition of the cyanide anion in the relevant fluorescent sensing mechanism. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

2.
Given the tremendous potential of fluorescence sensors in recent years, in this present work, we theoretically explore a novel fluorescence chemosensor [2‐(2‐Hydroxy‐phenyl)‐1H‐benzoimidazol‐5‐yl]‐phenyl‐methanone (HBPM) about its excited state behaviors and probe‐response mechanism. Using density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods, we explore the S0‐state and S1‐state hydrogen bond dynamical behaviors and confirm that the strengthening intramolecular hydrogen bond in the S1 state may promote the excited state intramolecular proton transfer (ESIPT) reaction. In view of the photoexcitation process, we find that the charge redistribution around the hydroxyl moiety plays important roles in providing driving force for ESIPT. And the constructed potential energy curves further verify that the ESIPT process of HBPM should be ultrafast. That is the reason why the normal HBPM fluorescence cannot be detected in previous experiment. Furthermore, with the addition of fluoride anions, the exothermal deprotonation process occurs spontaneously along with the intermolecular hydrogen bond O–H?F. It reveals the uniqueness of detecting fluoride anions using HBPM molecules. As a whole, the fluoride anions inhibit the initial ESIPT process of HBPM, which results in different fluorescence behaviors. This work presents the clear ESIPT process and fluoride anion‐sensing mechanism of a novel HBPM chemosensor.  相似文献   

3.
The sensing mechanism of a fluoride‐anion probe BODIPY‐amidothiourea ( 1c ) has been elucidated through the density functional theory (DFT) and time‐dependent density functional theory (TDDFT) calculations. The theoretical study indicates that in the DMSO/water mixtures the fluorescent sensing has been regulated by the fluoride complex that formed between the probe 1c /two water molecules and the fluoride anion, and the excited‐state intermolecular hydrogen bond (H‐B) plays an important role in the fluoride sensing mechanism. In the first excited state, the H‐Bs of the fluoride complex 1cFH2 are overall strengthened, which induces the weak fluorescence emission. In addition, molecular orbital analysis demonstrates that 1cFH2 has more obvious intramolecular charge transfer (ICT) character in the S1 state than 1cH2 formed between the probe 1c and two water molecules, which also gives reason to the weaker fluorescence intensity of 1cFH2 . Further, our calculated UV‐vis absorbance and fluorescence spectra are in accordance with the experimental measurements. © 2018 Wiley Periodicals, Inc.  相似文献   

4.
A simple, highly selective and sensitive colorimetric system for the detection of fluoride ion in an aqueous medium has been developed using 2‐(2‐hydroxyphenyl)‐2,3‐dihydroquinolin‐4(1 H)‐one. This system allows selective “turn‐on” fluorescence detection of fluoride ion, which is found to be dependent upon guest basicity. An excited‐state proton transfer is proposed to be the signaling mechanism, which is rationalized by DFT and TD‐DFT calculations. The present sensor can also be applied to detect fluoride levels in real water samples.  相似文献   

5.
The intramolecular proton transfer in a newly synthesized molecule, 2‐(2′‐hydroxyphenyl)oxazolo[4,5‐b]pyridine (HPOP) is studied using UV‐visible absorption, fluorescence emission, fluorescence excitation and time‐resolved fluorescence spectroscopy. In the ground state, the molecule exists as cis‐ and trans‐enol in all the solvents. However, in dioxane, alcohols, acetonitrile, dimethylformamide and dimethylsulfoxide the keto tautomer is also observed in the ground state. Dual fluorescence is observed in HPOP where the large Stoke shifted emission is due to emission from the excited‐state intramolecular proton transfer product, whereas the other emission is the normal emission from enol form. The fluorescence (both normal and tautomer emission) of HPOP is less than those of corresponding benzoxazole and imidazopyridine derivatives. This reveals that the nonradiative decay becomes more efficient upon substitution of electronegative atom on the charge acceptor group. The pH studies substantiate the conclusion that (unlike in its imidazole analog) the third ground state species is the keto tautomer and not the monoanion. The effect of temperature on cis‐enol‐trans‐enol‐keto equilibrium and the nonradiative deactivation from the excited state are also investigated.  相似文献   

6.
In this work, the time‐dependent density functional theory (TDDFT) method was carried out to investigate the hydrogen‐bonded intramolecular charge‐transfer excited state of 2‐(4′‐N,N‐dimethylaminophenyl)imidazo[4,5‐b]pyridine (DMAPIP) in methanol (MeOH) solvent. All the geometric conformations of the ground state and locally excited (LE) state and the twisted intramolecular charge‐transfer (TICT) state for isolated DMAPIP and its hydrogen‐bonded complexes have been optimized. At the same time, the absorption and fluorescence spectra of DMAPIP and the hydrogen‐bonded complexes in different electronic states are also calculated. We theoretically demonstrated for the first time that the intermolecular hydrogen bond formed between DMAPIP and MeOH can induce the formation of the TICT state for DMAPIP in MeOH solvent. Therefore, the two components at 414 and 506 nm observed in the fluorescence spectra of DMAPIP in MeOH solvent were reassigned in this work. The fluorescence peak at 414 nm is confirmed to be the LE state. Furthermore, the red‐shifted shoulder at 506 nm should be originated from the hydrogen‐bonded TICT excited state. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

7.
《中国化学会会志》2018,65(8):1014-1018
In this work, the sensing mechanism of a new fluoride chemosensor 12‐([tert‐butyldiphenylsilyl]oxy)‐8a,13a‐dihydro‐7H‐benzo[de]benzo[4,5]imidazo[2,1‐a]‐isoquinolin‐7‐one (abbreviated as D2) is investigated using density functional theory (DFT) and time‐dependent DFT (TDDFT) methods. The theoretical electronic spectra (vertical excitation energies and fluorescence peak) reproduced previous experimental results (D. Li et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017 , 185, 173), which confirms the rationality of the theoretical level used in this work. The constructed potential energy curve of the desilylation process suggests that the low barrier could be responsible for the rapid response to fluoride anions. Analyses of the binding energies show that only fluoride anion can be detected by D2 chemosensor in dimethylsulfoxide (DMSO). In view of the excitation process, the strong intramolecular charge transfer (ICT) process of the S0 → S1 transition explains the red shift of the absorption peak of the D2 sensor with the addition of fluoride anions. This work not only presents a straightforward sensing mechanism of sensing of the fluoride anion by the D2 chemosensor but should also play an important role in the synthesis and design of fluorescent sensors in future.  相似文献   

8.
The photophysical properties of 5‐deazaalloxazine and 1,3‐dimethyl‐5‐deazaalloxazine were studied in different solvents. These compounds have higher values of fluorescence quantum yields and longer fluorescence lifetimes, compared to those obtained for their alloxazine analogs. Electronic structure and S0Si transitions were investigated using the ab initio methods [MP2, CIS(D), EOM‐CCSD] with the correlation‐consistent basis sets. Also the time‐dependent density functional theory (TD‐DFT) has been employed. The lowest singlet excited states of 5‐deazaalloxazine and 1,3‐dimethyl‐5‐deazaalloxazine are predicted to have the π, π* character, whereas similar alloxazines have two close‐lying π, π* and n, π* transitions. Experimental steady‐state and time‐resolved spectral studies indicate formation of an isoalloxazinic excited state via excited‐state double‐proton transfer (ESDPT) catalyzed by an acetic acid molecule that forms a hydrogen bond complex with the 5‐deazaalloxazine molecule. Solvatochromism of both 5‐deazaalloxazine and its 1,3‐dimethyl substituted derivative was analyzed using the Kamlet–Taft scale and four‐parameter Catalán solvent scale. The most significant result of our studies is that the both scales show a strong influence of solvent acidity (hydrogen bond donating ability) on the emission properties of these compounds, indicating the importance of intermolecular solute–solvent hydrogen‐bonding interactions in their excited state.  相似文献   

9.
Studies of 2‐(1H‐pyrazol‐5‐yl)pyridine (PPP) and its derivatives 2‐(4‐methyl‐1H‐pyrazol‐5‐yl)pyridine (MPP) and 2‐(3‐bromo‐1H‐pyrazol‐5‐yl)pyridine (BPP) by stationary and time‐resolved UV/Vis spectroscopic methods, and quantum chemical computations show that this class of compounds provides a rare example of molecules that exhibit three types of photoreactions: 1) excited‐state intramolecular proton transfer (ESIPT) in the syn form of MPP, 2) excited‐state intermolecular double‐proton transfer (ESDPT) in the dimers of PPP in nonpolar media, as well as 3) solvent‐assisted double‐proton transfer in hydrogen‐bonded 1:1 complexes of PPP and MPP with alcoholic partners. The excited‐state processes are manifested by the appearance of a dual luminescence and a bimodal irreversible kinetic coupling of the two fluorescence bands. Ground‐state syn–anti equilibria are detected and discussed. The fraction of the higher‐energy anti form varies for different derivatives and is strongly dependent on the solvent polarity and hydrogen‐bond donor or acceptor abilities.  相似文献   

10.
It is well known that ions play important roles in our life sciences, and the detection of ions has attracted more and more attention. In this work, we focus on the sensing response mechanism of a novel fluoride chemosensor, 4‐((tert‐butyldiphenylsilyl)oxy)isophthalaldehyde (BIPA). Based on density functional theory and time‐dependent density functional theory methods, we clarify that fluoride anions could trigger the cleavage reaction of the Si‐O bond of BIPA in the ground state. And, the potential energy curve of desilylation process reveals the rapid response to fluoride anions. Comparing the binding energies between fluoride anions and other anions, we confirm that only the fluoride anions could be detected using the BIPA chemosensor in ethanol solvent. Considering the photo‐excitation process, we find the strong intramolecular charge transfer process for the S0 → S1 transition could explain the red shift of the absorption spectra of the BIPA system. This work not only clarifies the specific fluoride‐sensing mechanism, but also plays a role in facilitating designing and synthesizing of novel fluorescent sensors in future.  相似文献   

11.
The UV‐dissipative mechanisms of the eumelanin building block 5,6‐dihydroxyindole‐2‐carboxylic acid (DHICA) and the 4,7‐dideutero derivative (DHICA‐d2) in buffered H2O or D2O have been characterized by using ultrafast time‐resolved fluorescence spectroscopy. Excitation of the carboxylate anion form, the dominating state at neutral pH, leads to dual fluorescence. The band peaking at λ=378 nm is caused by emission from the excited initial geometry. The second band around λ=450 nm is owed to a complex formed between the mono‐anion and specific buffer components. In the absence of complex formation, the mono‐anion solely decays non‐radiatively or by emission with a lifetime of about 2.1 ns. Excitation of the neutral carboxylic acid state, which dominates at acidic pH, leads to a weak emission around λ=427 nm with a short lifetime of 240 ps. This emission originates from the zwitterionic state, formed upon excitation of the neutral state by sub‐ps excited‐state intramolecular proton transfer (ESIPT) between the carboxylic acid group and the indole nitrogen. Future studies will unravel whether this also occurs in larger building blocks and ESIPT is a built‐in photoprotective mechanism in epidermal eumelanin.  相似文献   

12.
The effect of the macrocyclic host, cucurbit[7]uril (CB7), on the photophysical properties of the 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI) dye have been investigated in aqueous solution by using ground‐state absorption and steady‐state and time‐resolved fluorescence measurements. All three prototropic forms of the dye (cationic, neutral, and anionic) form inclusion complexes with CB7, with the largest binding constant found for the cationic form (K≈2.4×106 M ?1). At pH≈4, the appearance of a blue emission band upon excitation of the HPBI cation in the presence of CB7 indicates that encapsulation into the CB7 cavity retards the deprotonation process of the excited cation, and hence reduces its subsequent conversion to the keto form. Excitation of the neutral form (pH≈8.5), however, leads to an increase in the keto form fluorescence, indicating an enhanced excited‐state intramolecular proton‐transfer process for the encapsulated dye. In both the ground and excited states, the two pKa values of the HPBI dye show upward shifts in the presence of CB7. The prototropic equilibrium of the CB7‐complexed dye is represented by a six‐state model, and the pH‐dependent changes in the binding constants have been analyzed accordingly. It has been observed that the calculated pKa values using this six‐state model match well with the values obtained experimentally. The changes in the pKa values in the presence of CB7 have been corroborated with the modulation of the proton‐transfer process of the dye within the host cavity.  相似文献   

13.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

14.
2‐(2‐Hydroxy‐phenyl)‐4(3H)‐quinazolinone (HPQ), an organic fluorescent material that exhibits fluorescence by the excited‐state intramolecular proton‐transfer (ESIPT) mechanism, forms two different polymorphs in tetrahydrofuran. The conformational twist between the phenyl and quinazolinone rings of HPQ leads to different molecular packing in the solid state, giving structures that show solid‐state fluorescence at 497 and 511 nm. HPQ also shows intense fluorescence in dimethyl formamide (DMF) solution and selectively detects Zn2+ and Cd2+ ions at micromolar concentrations in DMF. Importantly, HPQ not only detects Zn2+ and Cd2+ ions selectively, but it also distinguishes between the metal ions with a fluorescence λmax that is blue‐shifted from 497 to 420 and 426 nm for Zn2+ and Cd2+ ions, respectively. Hence, tunable solid‐state fluorescence and selective metal‐ion‐sensor properties were demonstrated in a single organic material.  相似文献   

15.
A fluorescent metallogel (2.6 % w/v) has been obtained from two non‐fluorescent components viz. phenyl‐succinic acid derived pro‐ligand H2PSL and LiOH (2 equiv.) in DMF. Li+ ion not only plays a crucial role in gelation through aggregation, but also contributed towards enhancement of fluorescence by imposing restriction over excited state intramolecular proton transfer (ESIPT) followed by origin of chelation enhanced fluorescence (CHEF) phenomenon. Further, the participation of CHEF followed by aggregation‐caused quenching (ACQ) and aggregation‐induced emission (AIE) in the gelation process have been well established by fluorescence experiments. Transmission electron microscopy (TEM) analysis disclosed the sequential creation of nanonuclei followed by nanoballs and their alignment towards the generation of fibers of about 3, 31 and 40 nm diameter, respectively. The presence of a long‐range fibrous morphology inside the metallogel was further attested by scanning electron microscopy (SEM). Rheological studies on the metallogel showed its true gel‐phase material nature. Nyquist impedance study shows a resistance value of 7.4 kΩ for the metallogel which upon applying ultrasound increased to 8.5 kΩ, while an elevated temperature of 70 °C caused reduction in the resistance value to 4.8 kΩ. The mechanism behind metallogel formation has been well established by using FTIR, UV‐vis, SEM, TEM, PXRD, 1H NMR, fluorescence and ESI‐MS.  相似文献   

16.
2‐(3,4,5,6‐Tetrafluoro‐2‐hydroxyphenyl)benzoxazole ( 2 ) emits the long wavelength fluorescence around 500 nm in nonpolar solvent via the intramolecular proton transfer process in the excited state of 2 (enol‐form) and also emits the intermediate wavelength fluorescence around 440 nm in polar solvent, which is assumed to originate from the excited state of 2 (anion). The ease of formation of 2 (anion), compared to 2‐(2‐hydroxyphenyl)benzoxazole ( 1 ), is explained by the strongly inductive fluorine atoms. In a solvent with the intermediate polarity, 2 emits both fluorescences and their relative intensity is dependent on the concentration of 2 , which is supposed to be caused by the high sensitivity of the intermediate wavelength emission to the concentration quenching.  相似文献   

17.
Among the well‐known phototriggers, the p‐hydroxyphenacyl (pHP) group has consistently enabled the very fast, efficient, and high‐conversion release of active molecules. Despite this unique behavior, the pHP group has been ignored as a delivery agent, particularly in the area of theranostics, because of two major limitations: Its excitation wavelength is below 400 nm, and it is nonfluorescent. We have overcome these limitations by incorporating a 2‐(2′‐hydroxyphenyl)benzothiazole (HBT) appendage capable of rapid excited‐state intramolecular proton transfer (ESIPT). The ESIPT effect also provided two unique advantages: It assisted the deprotonation of the pHP group for faster release, and it was accompanied by a distinct fluorescence color change upon photorelease. In vitro studies showed that the p‐hydroxyphenacyl–benzothiazole–chlorambucil conjugate presents excellent properties, such as real‐time monitoring, photoregulated drug delivery, and biocompatibility.  相似文献   

18.
The fluorescence properties of polysilane can be strongly influenced by creating new excited states that involve electronic transitions and the relaxation to the ground state. This work presents the optical effects obtained by doping a specially designed polydiphenylsilane copolymer with Zn complex of N,N′‐bis(4‐hydroxysalicylidene)‐1,2‐phenylenediamine. The nanocomposites have been prepared in solution by mixing the polymer with low amounts of Zn–salophen and using tetrahydrofuran as solvent. The ultraviolet–visible spectrum has shown the occurrence of an intermolecular charge transfer between polysilane and the metal complex. Photoluminescence studies have revealed an interesting dual emission profile of nanocomposite. The origin of this phenomenon has been evidenced by molecular modeling and simulation of the electronic transitions. The modeling results have unveiled a new low‐lying excited state due to intermolecular interactions. The thin films of nanocomposites have been drop‐casted from solutions. The obtained films have been studied by Transmission Electron Microscopy (TEM)‐Scanning Transmission Electron Microscopy (STEM)‐Energy Dispersive X‐ray analysis (EDX) to gain information on the film‐forming capacity and surface morphology. The results have revealed a high potential of such materials for fluorescence sensing applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we theoretically explore the motivation and behaviors of the excited‐state intramolecular proton transfer (ESIPT) reaction for a novel white organic light‐emitting diode (WOLED) material 4‐tert‐butyl‐2‐(5‐(5‐tert‐butyl‐2‐methoxyphenyl)thiazolo[5,4‐d]thiazol‐2‐yl)‐phenol (t‐MTTH). The “atoms in molecules” (AIM) method is adopted to verify the formation and existence of the hydrogen bond O? H···N. By analyzing the excited‐state hydrogen bonding behaviors via changes in the chemical bonding and infrared (IR) vibrational spectra, we confirm that the intramolecular hydrogen bond O? H···N should be getting strengthened in the first excited state in four kinds of solvents, thus revealing the tendency of ESIPT reaction. Further, the role of charge‐transfer interaction is addressed under the frontier molecular orbitals (MOs), which depicts the nature of the electronic excited state and supports the ESIPT reaction. Also, the electron distribution confirms the ESIPT tendency once again. The scanned and optimized potential energy curves according to variational O? H coordinate in the solvents demonstrate that the proton transfer reaction should occur in the S1 state, and the potential energy barriers along with ESIPT direction support this reaction. Based on the excited‐state behaviors reported in this work, the experimental spectral phenomenon has been reasonably explained.  相似文献   

20.
9‐Alkyl xanthenones with different aliphatic pendant groups have been easily prepared by means of nucleophilic addition of the corresponding Grignard derivative to a tert‐butyldimethylsilyl ether (TBDMS)‐protected 3,6‐dihydroxy‐xanthenone. The photophysical behavior of the new dyes has been explored by using absorption, steady‐state‐, and time‐resolved fluorescence measurements. We determined the equilibrium constants, visible spectral characteristics, fluorescence quantum yield, and decay times. Remarkably, they retain similar fluorescent properties of fluorescein including the characteristic phosphate‐mediated excited‐state proton‐transfer (ESPT) reaction. 6‐Hydroxy‐9‐isopropyl‐3H‐xanthen‐3‐one ( 5 ) was investigated in living cells; it presented a good permeability and efficient accumulation inside the cytosol. For the first time, we reported that the requirement of an aryl group at C‐9 is no longer needed and new fluorescent sensors can be therefore easily developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号