首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present here the extension of the crossover soft-statistical associating fluid theory (soft-SAFT) equation of state to mixtures, as well as some illustrative applications of the methodology to mixtures of particular scientific and technological interest. The procedure is based on White's work (White, J. A. Fluid Phase Equilib. 1992, 75, 53) from the renormalization group theory, as for the pure fluids, with the isomorphism assumption applied to the mixtures. The equation is applied to three groups of mixtures: selected mixtures of n-alkanes, the CO2/n-alkane homologous series, and the CO2/1-alkanol homologous series. The crossover equation is first applied to the pure components of the mixtures, CO2 and the 1-alkanol family, while an available correlation is used for the molecular parameters of the n-alkane series (Llovell et al. J. Chem. Phys 2004, 121, 10715). A set of transferable molecular parameters is provided for the 1-alkanols series; these are accurate for the whole range of thermodynamic conditions. The crossover soft-SAFT equation is able to accurately describe these compounds near to and far from the critical point. The theory is then used to represent the phase behavior and the critical phenomena of the selected mixtures. We use binary interaction parameters xi and eta for dissimilar mixtures. These parameters are fitted at some particular conditions (one subcritical temperature or binary critical data) and used to predict the behavior of the mixture at different conditions (other subcritical conditions and/or critical conditions). The equation is able to capture the continuous change in the critical behavior of the CO2/n-alkane and the CO2/1-alkanol homologous series as the chain length of the second compound increases. Excellent agreement with experimental data is obtained, even in the most nonideal cases. The new equation is proved to be a powerful tool to study the global phase behavior of complex systems, as well as other thermodynamic properties of very challenging mixtures.  相似文献   

2.
In this research, we use the original Peng-Robinson (PR) equation of state (EOS) for pure fluids and develop a crossover cubic equation of state which incorporates the scaling laws asymptotically close to the critical point and it is transformed into the original cubic equation of state far away from the critical point. The modified EOS is transformed to ideal gas EOS in the limit of zero density. A new formulation for the crossover function is introduced in this work. The new crossover function ensures more accurate change from the singular behavior of fluids inside the regular classical behavior outside the critical region. The crossover PR (CPR) EOS is applied to describe thermodynamic properties of pure fluids (normal alkanes from methane to n-hexane, carbon dioxide, hydrogen sulfide and R125). It is shown that over wide ranges of state, the CPR EOS yields the thermodynamic properties of fluids with much more accuracy than the original PR EOS. The CPR EOS is then used for mixtures by introducing mixing rules for the pure component parameters. Higher accuracy is observed in comparison with the classical PR EOS in the mixture critical region.  相似文献   

3.
We present in this work the application of the soft-SAFT equation of state (EoS) to the calculation of some main derivative properties, including heat capacities, reduced bulk modulus, Joule-Thomson coefficient, and speed of sound. Calculations have been performed analytically through the derivation of a primary thermodynamic potential function. The application to the n-alkanes, n-alkenes, and 1-alkanols families has been done in a semipredictive manner, with the molecular parameters of the equation obtained from previous fitting to vapor-liquid equilibrium data of the same compounds. The equation is able to capture the typical extrema isothermal derivative properties exhibit with respect to density, providing quantitative agreement with experimental (or correlation) data in some cases. Results in the vicinity of the critical point are improved by adding a crossover treatment to take into account the long-range fluctuations present in this region. By taking advantage of the molecular nature of the equation, we have been able to separate and quantify the different contributions (reference fluid, chain, and association) to the total derivative properties. The association plays a predominant role in energetic properties, such as the heat capacities, while there is a competition between association and chain length as the chain length of the compound increases for volumetric properties, such as the isothermal compressibility. These results act in favor of the molecular-based equations, like soft-SAFT, as predictive tools for several applications.  相似文献   

4.
《Fluid Phase Equilibria》2006,248(2):115-122
We have discussed the capability of the soft-SAFT equation of state (EoS) to predict second order thermodynamic derivative properties of pure fluids in a recent paper [F. Llovell, L.F. Vega, J. Phys. Chem. B 110 (2006) 11427–11437]. The goal of this work is to extend these calculations to selected binary mixtures. The equation was applied in a semi-predictive manner: the pure component molecular parameters needed to apply soft-SAFT to experimental systems were obtained by fitting vapor–liquid equilibrium data and used, without further fitting, to calculate isochoric and isobaric heat capacities of selected alkane + n-alkane and n-alkane + 1-alkanol binary mixtures; isentropic compressibility coefficients and the speed of sound of selected n-alkane + 1-alkanol mixtures were calculated following the same procedure. We have used the crossover soft-SAFT equation which explicitly incorporates a renormalization group term in order to take into account the long range fluctuations appearing in the near critical region. Soft-SAFT was able to capture the qualitative behavior of the mixture properties studied, for a wide range of conditions, showing quantitative agreement with experimental data in some of the cases. As a further test to the equation, we have also calculated excess properties. The equation was able to capture the non-ideal behavior upon mixing experienced by these properties. This work shows the robustness of the molecular parameters and the equation to calculate properties not included in the fitting procedure, in a predictive manner.  相似文献   

5.
A lattice fluid model is one of the most versatile, molecular-based engineering equations of state (EOS) but, in common with all analytic equations of state, the lattice fluid (LF) EOS exhibits classical behaviour in the critical region rather than the non-analytical, singular behaviour seen in real fluids. In this research, we use the LF EOS and develop a crossover lattice fluid (xLF) equation of state near to and far from the critical region which incorporates the scaling laws valid asymptotically close to the critical point while reducing to the original classical LF EOS far from the critical point. We show that, over a wide range of states, the xLF EOS yields the saturated vapour pressure data and the density data with much better accuracy than the classical LF EOS.  相似文献   

6.
7.
Thermodynamic analysis of binary mixtures near the critical region is essential for many chemical process designs. In this research, based on isomorphism principle and incorporating general crossover approach the original Soave–Redlich–Kwong (SRK) equation of state (EOS) was developed for the binary mixtures. We have introduced an additional term in the crossover function in order to take into account the difference between the classical critical parameters and the real critical parameters. The applicability of this crossover EOS was verified against methane–ethane mixture to describe their thermodynamic properties over a wide range of thermodynamic states, because of their wide applications. It is shown that based on this approach we can received too much more accuracy for predicting thermodynamic properties in comparison with classical form of SRK EOS.  相似文献   

8.
In previous work, we developed the crossover lattice equation of state (xLF EOS) for pure fluids and the xLF EOS yielded the saturated vapour pressure and the density values with a much better accuracy than the classical LF EOS over a wide range. In this work, we extended xLF EOS to fluid mixtures. Classical composition-dependent mixing rules with only adjustable two binary interaction parameters same as the LF EOS are used. A comparison is made upon experimental data for fluids mixtures in the one- and two-phase regions. The xLF EOS shows more improved representations than the LF EOS, especially in the critical region.  相似文献   

9.
10.
An accurate prediction of phase behavior at conditions far and close to criticality cannot be accomplished by mean-field based theories that do not incorporate long-range density fluctuations. A treatment based on renormalization-group (RG) theory as developed by White and co-workers has proven to be very successful in improving the predictions of the critical region with different equations of state. The basis of the method is an iterative procedure to account for contributions to the free energy of density fluctuations of increasing wavelengths. The RG method has been combined with a number of versions of the statistical associating fluid theory (SAFT), by implementing White's earliest ideas with the improvements of Prausnitz and co-workers. Typically, this treatment involves two adjustable parameters: a cutoff wavelength L for density fluctuations and an average gradient of the wavelet function Φ. In this work, the SAFT-VR (variable range) equation of state is extended with a similar crossover treatment which, however, follows closely the most recent improvements introduced by White. The interpretation of White's latter developments allows us to establish a straightforward method which enables Φ to be evaluated; only the cutoff wavelength L then needs to be adjusted. The approach used here begins with an initial free energy incorporating only contributions from short-wavelength fluctuations, which are treated locally. The contribution from long-wavelength fluctuations is incorporated through an iterative procedure based on attractive interactions which incorporate the structure of the fluid following the ideas of perturbation theories and using a mapping that allows integration of the radial distribution function. Good agreement close and far from the critical region is obtained using a unique fitted parameter L that can be easily related to the range of the potential. In this way the thermodynamic properties of a square-well (SW) fluid are given by the same number of independent intermolecular model parameters as in the classical equation. Far from the critical region the approach provides the correct limiting behavior reducing to the classical equation (SAFT-VR). In the critical region the β critical exponent is calculated and is found to take values close to the universal value. In SAFT-VR the free energy of an associating chain fluid is obtained following the thermodynamic perturbation theory of Wertheim from the knowledge of the free energy and radial distribution function of a reference monomer fluid. By determining L for SW fluids of varying well width a unique equation of state is obtained for chain and associating systems without further adjustment of critical parameters. We use computer simulation data of the phase behavior of chain and associating SW fluids to test the accuracy of the new equation.  相似文献   

11.
We apply the crossover lattice equation of state (xLF EOS) [M.S. Shin, Y. Lee, H. Kim, J. Chem. Thermodyn. 40 (2007) 174–179] to the calculations of thermodynamic 2nd-order derivative properties (isochoric heat capacity, isobaric heat capacity, isothermal compressibility, thermal expansion coefficient, Joule–Thompson coefficient, and sound speed). This equation of state is used to calculate the same properties of pure systems (carbon dioxide, normal alkanes from methane to propane). We show that, over a wide range of states, the equation of state yields properties with better accuracy than the lattice equation of state (LF EOS), and near the critical region, represents singular behavior well.  相似文献   

12.
《Fluid Phase Equilibria》1999,155(1):33-55
We have developed a crossover formalism for the thermodynamic surface of pure fluids, which can be applied to any multiparameter equation of state. This procedure has been used to incorporate scaling law behavior into a representation of the thermodynamic properties of water and steam developed by Pruss and Wagner (PW EOS) and adopted recently by the International Association for the Properties of Water and Steam. Our revision to this equation retains most of the functional form and coefficients of the PW EOS, but replaces two of the terms with a crossover representation of scaling law behavior. In order to develop this model, we first developed a new crossover formulation for steam in the critical region, and second, we have incorporated universal crossover functions into the original PW EOS. In the modified form, the PW equation of state reproduces the scaling laws down to dimensionless temperatures τ=10−7. Far from the critical point the equations practically coincide.  相似文献   

13.
《Fluid Phase Equilibria》1999,161(1):63-76
A method for improving the behavior of classical equations of state (EOS) in the critical region, originally proposed by Fox [J.R. Fox, Fluid Phase Equilibria 14 (1983) 45–53], has been modified in this work for the Patel–Teja (PT) EOS [N.C. Patel, A.S. Teja, Chem. Eng. Sci. 37, 463–473]. The application of the new equation (NPT) for predicting PVT and vapor pressure behavior of pure substances, as well as vapor–liquid equilibrium behavior of binary mixtures, is demonstrated. The NPT equation is simple to use and requires the same input information as the original PT equation. However, it reproduces the correct PVT behavior in the critical region. Limitations of both the PT and NPT equations in calculating the isochoric heat capacity are discussed.  相似文献   

14.
A crossover statistical associating fluid theory (SAFT) equation of state (EOS) is used to fit the parameters of eight common pure supercritical fluids (water, ammonia, carbon dioxide, R134a, ethane, propane, ethene and propene) and calculate their thermodynamic properties. Over a wide range including the critical region, the EOS reproduces the saturated pressure data with an average absolute deviation (AAD) of about 1% and the saturated densities with an AAD of about 2%. In the one-phase region, the EOS represents the experimental values of pressure with an AAD of about 1–3%. The results are satisfactory.  相似文献   

15.
付东 《中国化学》2006,24(10):1315-1320
An equation of state(EOS)applicable for both the uniform and non-uniform fluids was established by using thedensity-gradient expansion,in which the influence parameter к[p(r),T] was obtained by the use of direct correlationfunction.The density functional theory(DFT)provides a framework under which both the phase equilibria and in-terfacial properties can be investigated within a single set of molecular parameters.The phase equilibria inside thecritical region can be improved by the renormalization group theory(RGT).However,the correction of interracialproperties by DFT and RGT is computationally difficult.In the present work,the density gradient theory(DGT)inwhich к[p(r),T] is treated as a constant is used to combine with the RGT for interfacial properties inside the criticalregion.  相似文献   

16.
烃类pVT性质的精细表征对能源动力、化工等领域应用有重要价值,临界区热力性质描述是难点之一.本文建立了烷烃(C1-C20)的跨接比容平移Soave-Redlich-Kwong(SRK)(跨接VTSRK)状态方程,在SRK状态方程的基础上引入了比容平移和跨接方法,以改善饱和液相密度和近临界区域热力学性质的计算精度,方程参数被表达为物质临界参数和偏心因子的函数.比较结果表明,跨接方程对烷烃(C1-C20)饱和蒸气压、饱和气相密度、饱和液相密度的计算平均偏差分别为1.01%、1.83%和0.93%,显著优于原方程,单相区和近临界区的pVT性质计算精度也比原状态方程有较大改善.进一步将方程推广到环烷烃(环丙烷、环戊烷和环己烷)和苯、甲苯的计算,也获得了较好效果,验证了方程的预测能力.  相似文献   

17.
烃类pVT性质的精细表征对能源动力、化工等领域应用有重要价值,临界区热力性质描述是难点之一.本文建立了烷烃(C1-C20)的跨接比容平移Soave-Redlich-Kwong(SRK)(跨接VTSRK)状态方程,在SRK状态方程的基础上引入了比容平移和跨接方法,以改善饱和液相密度和近临界区域热力学性质的计算精度,方程参数被表达为物质临界参数和偏心因子的函数. 比较结果表明,跨接方程对烷烃(C1-C20)饱和蒸气压、饱和气相密度、饱和液相密度的计算平均偏差分别为1.01%、1.83%和0.93%,显著优于原方程,单相区和近临界区的pVT性质计算精度也比原状态方程有较大改善. 进一步将方程推广到环烷烃(环丙烷、环戊烷和环己烷)和苯、甲苯的计算,也获得了较好效果,验证了方程的预测能力.  相似文献   

18.
Nitriles are strong polar compounds showing a highly non-ideal behavior, which makes them challenging systems from a modeling point of view; in spite of this, accurate predictions for the vapor–liquid equilibria of these systems are needed, as some of them, like acetonitrile (CH3CN) and propionitrile (C2H5CN), play an important role as organic solvents in several industrial processes. This work deals with the calculation of the vapor–liquid equilibria (VLE) of nitriles and their mixtures by using the crossover soft-SAFT Equation of State (EoS). Both polar and associating interactions are taken into account in a single association term in the crossover soft-SAFT equation, while the crossover term allows for accurate calculations both far from and close to the critical point. Molecular parameters for acetonitrile, propionitrile and n-butyronitrile (C3H7CN) are regressed from experimental data. Their transferability is tested by the calculation of the VLE of heavier linear nitriles, namely, valeronitrile (C4H9CN) and hexanonitrile (C5H11CN), not included in the fitting procedure. Crossover soft-SAFT results are in excellent agreement with experimental data for the whole range of thermodynamic conditions investigated, proving the robustness of the approach. Parameters transferability has also been used to describe the isomers n-butyronitrile and i-butyronitrile. Finally, the nitriles soft-SAFT model is further tested in VLE calculation of mixtures with benzene, carbon tetrachloride and carbon dioxide, which proved to be satisfactory as well.  相似文献   

19.
《Fluid Phase Equilibria》2005,233(2):194-203
This work presents an empirical correction to improve the Peng–Robinson equation of state (PR EOS) for representing the densities of pure liquids and liquid mixtures in the saturated region using the volume translation method. A temperature-dependent volume correction is employed to improve the original PR EOS so that it can match the true critical point of pure fluids. The volume correction is generalized as a function of the critical parameters and the reduced temperature. The volume translation PR (VTPR) EOS with the generalized volume correction accurately represents the saturated liquid densities for different polar and non-polar fluids, including alkanes, cycloparaffins, halogenated hydrocarbons, olefins, cyclic olefins, aromatics and inorganic molecules. The average relative deviations for 91 pure compounds was 1.37%. The generalized VTPR EOS was also used to predict the saturated liquid density of 53 binary mixtures with a relative deviation of 0.98%. The generalized VTPR EOS can also be extended to other materials. The accuracy of the generalized VTPR EOS compares well with other methods and equations of state.  相似文献   

20.
In this research, we apply the crossover cubic equation of state (XCubic EOS) [1] to the calculations of thermodynamic second-order derivative properties (isochoric heat capacity, isobaric heat capacity, isothermal compressibility, thermal expansion coefficient, the Joule–Thomson coefficient, and speed of sound). This equation of state is used to calculate those properties of pure systems (carbon dioxide, normal alkanes from methane to propane). We show that, over a wide range of states, the equation of state yields each property with a much better accuracy than the original PT equation of state and near the critical region, represents the singular behaviour well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号