首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the low regularity of the Benney-Lin equation ut+uux+uxxx+β(uxx+uxxxx)+ηuxxxxx=0. We established the global well posedness for the initial value problem of Benney-Lin equation in the Sobolev spaces Hs(R) for 0?s>−2, improving the well-posedness result of Biagioni and Linares [H.A. Biaginoi, F. Linares, On the Benney-Lin and Kawahara equation, J. Math. Anal. Appl. 211 (1997) 131-152]. For s<−2 we also prove some ill-posedness issues.  相似文献   

2.
The Barnes’ G-function G(x) = 1/Γ2, satisfies the functional equation logG(x + 1) − logG(x) = logΓ(x). We complement W. Krull’s work in Bemerkungen zur Differenzengleichung g(x + 1) − g(x) = φ(x), Math. Nachrichten 1 (1948), 365-376 with additional results that yield a different characterization of the function G, new expansions and sharp bounds for G on x > 0 in terms of Gamma and Digamma functions, a new expansion for the Gamma function and summation formulae with Polygamma functions.  相似文献   

3.
Existence of positive solutions for the nonlinear fractional differential equation Dsu(x)=f(x,u(x)), 0<s<1, has been studied (S. Zhang, J. Math. Anal. Appl. 252 (2000) 804-812), where Ds denotes Riemann-Liouville fractional derivative. In the present work we study existence of positive solutions in case of the nonlinear fractional differential equation:
L(D)u=f(x,u),u(0)=0,0<x<1,  相似文献   

4.
We are concerned with the nonexistence of L2-solutions of a nonlinear differential equation x″=a(t)x+f(t,x). By applying technique similar to that exploited by Hallam [SIAM J. Appl. Math. 19 (1970) 430-439] for the study of asymptotic behavior of solutions of this equation, we establish nonexistence of solutions from the class L2(t0,∞) under milder conditions on the function a(t) which, as the examples show, can be even square integrable. Therefore, the equation under consideration can be classified as of limit-point type at infinity in the sense of the definition introduced by Graef and Spikes [Nonlinear Anal. 7 (1983) 851-871]. We compare our results to those reported in the literature and show how they can be extended to third order nonlinear differential equations.  相似文献   

5.
We study the oscillation problems for the second order half-linear differential equation [p(t)Φ(x)]+q(t)Φ(x)=0, where Φ(u)=|u|r−1u with r>0, 1/p and q are locally integrable on R+; p>0, q?0 a.e. on R+, and . We establish new criteria for this equation to be nonoscillatory and oscillatory, respectively. When p≡1, our results are complete extensions of work by Huang [C. Huang, Oscillation and nonoscillation for second order linear differential equations, J. Math. Anal. Appl. 210 (1997) 712-723] and by Wong [J.S.W. Wong, Remarks on a paper of C. Huang, J. Math. Anal. Appl. 291 (2004) 180-188] on linear equations to the half-linear case for all r>0. These results provide corrections to the wrongly established results in [J. Jiang, Oscillation and nonoscillation for second order quasilinear differential equations, Math. Sci. Res. Hot-Line 4 (6) (2000) 39-47] on nonoscillation when 0<r<1 and on oscillation when r>1. The approach in this paper can also be used to fully extend Elbert's criteria on linear equations to half-linear equations which will cover and improve a partial extension by Yang [X. Yang, Oscillation/nonoscillation criteria for quasilinear differential equations, J. Math. Anal. Appl. 298 (2004) 363-373].  相似文献   

6.
Let u be the weak solution to the degenerate Schrödinger equation with singular coefficients in Lipschitz domain as following
−div(w(x)A(x)∇u(x))+V(x)u(x)w(x)=0,  相似文献   

7.
In the case of oscillatory potentials, we establish an oscillation theorem for the forced sublinear differential equation x(n)+q(t)λ|x|sgnx=e(t), t∈[t0,∞). No restriction is imposed on the forcing term e(t) to be the nth derivative of an oscillatory function. In particular, we show that all solutions of the equation x+tαsintλ|x|sgnx=mtβcost, t?0, 0<λ<1 are oscillatory for all m≠0 if β>(α+2)/(1−λ). This provides an analogue of a result of Nasr [Proc. Amer. Math. Soc. 126 (1998) 123] for the forced superlinear equation and answers a question raised in an earlier paper [J.S.W. Wong, SIAM J. Math. Anal. 19 (1988) 673].  相似文献   

8.
In this paper, we are concerned with the existence of solutions to the N-dimensional nonlinear Schrödinger equation −ε2Δu+V(x)u=K(x)up with u(x)>0, uH1(RN), N?3 and . When the potential V(x) decays at infinity faster than −2(1+|x|) and K(x)?0 is permitted to be unbounded, we will show that the positive H1(RN)-solutions exist if it is assumed that G(x) has local minimum points for small ε>0, here with denotes the ground energy function which is introduced in [X. Wang, B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal. 28 (1997) 633-655]. In addition, when the potential V(x) decays to zero at most like (1+|x|)α with 0<α?2, we also discuss the existence of positive H1(RN)-solutions for unbounded K(x). Compared with some previous papers [A. Ambrosetti, A. Malchiodi, D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math. 98 (2006) 317-348; A. Ambrosetti, D. Ruiz, Radial solutions concentrating on spheres of NLS with vanishing potentials, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006) 889-907; A. Ambrosetti, Z.Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential Integral Equations 18 (2005) 1321-1332] and so on, we remove the restrictions on the potential function V(x) which decays at infinity like (1+|x|)α with 0<α?2 as well as the restrictions on the boundedness of K(x)>0. Therefore, we partly answer a question posed in the reference [A. Ambrosetti, A. Malchiodi, Concentration phenomena for NLS: Recent results and new perspectives, preprint, 2006].  相似文献   

9.
We consider the general nonlinear differential equation with xR2 and develop a method to determine the basin of attraction of a periodic orbit. Borg's criterion provides a method to prove existence, uniqueness and exponential stability of a periodic orbit and to determine a subset of its basin of attraction. In order to use the criterion one has to find a function WC1(R2,R) such that LW(x)=W(x)+L(x) is negative for all xK, where K is a positively invariant set. Here, L(x) is a given function and W(x) denotes the orbital derivative of W. In this paper we prove the existence and smoothness of a function W such that LW(x)=−μf(x)‖. We approximate the function W, which satisfies the linear partial differential equation W(x)=〈∇W(x),f(x)〉=−μf(x)‖−L(x), using radial basis functions and obtain an approximation w such that Lw(x)<0. Using radial basis functions again, we determine a positively invariant set K so that we can apply Borg's criterion. As an example we apply the method to the Van-der-Pol equation.  相似文献   

10.
We give a constructive proof of existence to oscillatory solutions for the differential equations x(t)+a(t)λ|x(t)|sign[x(t)]=e(t), where t?t0?1 and λ>1, that decay to 0 when t→+∞ as O(tμ) for μ>0 as close as desired to the “critical quantity” . For this class of equations, we have limt→+∞E(t)=0, where E(t)<0 and E(t)=e(t) throughout [t0,+∞). We also establish that for any μ>μ? and any negative-valued E(t)=o(tμ) as t→+∞ the differential equation has a negative-valued solution decaying to 0 at + ∞ as o(tμ). In this way, we are not in the reach of any of the developments from the recent paper [C.H. Ou, J.S.W. Wong, Forced oscillation of nth-order functional differential equations, J. Math. Anal. Appl. 262 (2001) 722-732].  相似文献   

11.
In this paper, by introducing the concept of topological equivalence on measure chain, we investigate the relationship between the linear system xΔ=A(t)x and the nonlinear system xΔ=A(t)x+f(t,x). Some sufficient conditions are obtained to guarantee the existence of a equivalent function H(t,x) sending the (c,d)-quasibounded solutions of nonlinear system xΔ=A(t)x+f(t,x) onto those of linear system xΔ=A(t)x. Our results generalize the Palmer's linearization theorem in [K.J. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl. 41 (1973) 753-758] to dynamic equation measure chains. In the present paper, we give a new analytical method to study the topological equivalence problem on measure chains. As we will see, due to the completely different method to investigate the topological equivalence problem, we have a considerably different result from that in the pioneering work of Hilger [S. Hilger, Generalized theorem of Hartman-Grobman on measure chains, J. Aust. Math. Soc. Ser. A 60 (2) (1996) 157-191]. Moreover, we prove that equivalent function H(t,x) is also ω-periodic when the systems are ω-periodic. Hilger [S. Hilger, Generalized theorem of Hartman-Grobman on measure chains, J. Aust. Math. Soc. Ser. A 60 (2) (1996) 157-191] never considered this important property of the equivalent function H(t,x).  相似文献   

12.
In this note we investigate the generalized Hyers-Ulam-Rassias stability for the new cubic type functional equation f(x+y+2z)+f(x+y−2z)+f(2x)+f(2y)=2[f(x+y)+2f(x+z)+2f(xz)+2f(y+z)+2f(yz)] by using the fixed point alternative. The first systematic study of fixed point theorems in nonlinear analysis is due to G. Isac and Th.M. Rassias [Internat. J. Math. Math. Sci. 19 (1996) 219-228].  相似文献   

13.
In previous papers we considered the Cauchy problem for the one-dimensional evolution p-Laplacian equation for nonzero, bounded, and nonnegative initial data having compact support, and showed that after a finite time the set of spatial critical points of the nonnegative solution u=u(xt) in {u>0} consists of one point, the spatial maximum point of u, and the curve of the spatial maximum points is continuous with respect to the time variable. Since the spatial derivative ∂xu satisfies the porous medium equation with sign changes, the curve of the spatial maximum points is regarded as an interface with sign changes of ∂xu. On the other hand, in a paper by M. Bertsch and D. Hilhorst (1991, Appl. Anal.41, 111-130) the interfaces where the solutions change their sign were studied in detail for the initial-boundary value problems of the generalized porous medium equation over two-dimensional cylinders. But the monotonicity of the initial data is assumed there. As is noted in Section 4 of our earlier work (1996, J. Math. Anal. Appl.203, 78-103), the monotonicity of ∂xu(?, t) in some neighborhood of the spatial maximum point of u(?, t) cannot be assumed, and therefore, if this monotonicity for some large t>0 is proved, then by the method of Bertsch and Hilhorst (cited above) one may get more precise regularity properties of the curve of the spatial maximum points. The purpose of the present paper is twofold. One is to remove some monotonicity assumption for initial data in Bertsch and Hilhorst's theorem concerning the regularity of the interfaces with sign changes of solutions of the one-dimensional generalized porous medium equation. By comparing the solution with appropriate symmetric nonnegative solutions we shall get the monotonicity of the solution near the interface after a finite time. The other is as a by-product of the method to get C1 regularity of the curves of the spatial maximum points of nonnegative solutions of the Cauchy problem for the evolution p-Laplacian equation for sufficiently large t.  相似文献   

14.
In this paper, we reconsider the problem discussed in [G.W. Chen, S.B. Wang, Small amplitude solutions of the generalized IMBq equation, J. Math. Anal. Appl. 274 (2002) 846-866]. The proof of global existence presented in [G.W. Chen, S.B. Wang, Small amplitude solutions of the generalized IMBq equation, J. Math. Anal. Appl. 274 (2002) 846-866] is very simple in form, but it is a pity that the authors overlooked the bad behavior of low frequency part of B(t)ψ which causes trouble in L and Hs estimates. In this paper, we will give out a new proof of the global existence under an additional condition on the initial data.  相似文献   

15.
In this paper we consider a new integrable equation (the Degasperis-Procesi equation) derived recently by Degasperis and Procesi (1999) [3]. Analogous to the Camassa-Holm equation, this new equation admits blow-up phenomenon and infinite propagation speed. First, we give a proof for the blow-up criterion established by Zhou (2004) in [12]. Then, infinite propagation speed for the Degasperis-Procesi equation is proved in the following sense: the corresponding solution u(x,t) with compactly supported initial datum u0(x) does not have compact x-support any longer in its lifespan. Moreover, we show that for any fixed time t>0 in its lifespan, the corresponding solution u(x,t) behaves as: u(x,t)=L(t)ex for x?1, and u(x,t)=l(t)ex for x?−1, with a strictly increasing function L(t)>0 and a strictly decreasing function l(t)<0 respectively.  相似文献   

16.
The propagation of travelling waves is a relevant physical phenomenon. As usual the understanding of a real propagating wave depends upon a correct formulation of a idealized model. Discontinuous functions, Dirac-δ measures and their distributional derivatives are, respectively, idealizations of sharp jumps, localized high peaks and single sharp localised oscillations. In the present paper we study the propagation of distributional travelling waves for Burgers inviscid equation. This will be afforded by our theory of distributional products, and is based on a rigorous and consistent concept of solution we have introduced in [C.O.R. Sarrico, Distributional products and global solutions for nonconservative inviscid Burgers equation, J. Math. Anal. Appl. 281 (2003) 641-656]. Our approach exhibit Dirac-δ travelling solitons (they are just the “infinitesimal narrow solitons” of Maslov, Omel'yanov and Tsupin [V.P. Maslov, O.A. Omel'yanov, Asymptotic soliton-form solutions of equations with small dispersion, Russian Math. Surveys 36 (1981) 73-149; V.P. Maslov, V.A. Tsupin, Necessary conditions for the existence of infinitely narrow solitons in gas dynamics, Soviet Phys. Dokl. 24 (1979) 354-356]) and also solutions which are not measures such as for instance u(x,t)=b+δ(xbt), a wave of constant speed b. Moreover, for signals with two jump discontinuities we have, in our setting, the propagation of more solitons and more values for the signal speed are allowed than those afforded within classical framework.  相似文献   

17.
Let G(x,y) and GD(x,y) be the Green functions of rotationally invariant symmetric α-stable process in Rd and in an open set D, respectively, where 0<α<2. The inequality GD(x,y)GD(y,z)/GD(x,z)?c(G(x,y)+G(y,z)) is a very useful tool in studying (local) Schrödinger operators. When the above inequality is true with c=c(D)∈(0,∞), then we say that the 3G theorem holds in D. In this paper, we establish a generalized version of 3G theorem when D is a bounded κ-fat open set, which includes a bounded John domain. The 3G we consider is of the form GD(x,y)GD(z,w)/GD(x,w), where y may be different from z. When y=z, we recover the usual 3G. The 3G form GD(x,y)GD(z,w)/GD(x,w) appears in non-local Schrödinger operator theory. Using our generalized 3G theorem, we give a concrete class of functions belonging to the non-local Kato class, introduced by Chen and Song, on κ-fat open sets. As an application, we discuss relativistic α-stable processes (relativistic Hamiltonian when α=1) in κ-fat open sets. We identify the Martin boundary and the minimal Martin boundary with the Euclidean boundary for relativistic α-stable processes in κ-fat open sets. Furthermore, we show that relative Fatou type theorem is true for relativistic stable processes in κ-fat open sets. The main results of this paper hold for a large class of symmetric Markov processes, as are illustrated in the last section of this paper. We also discuss the generalized 3G theorem for a large class of symmetric stable Lévy processes.  相似文献   

18.
Let X be a real linear space. We characterize continuous on rays solutions f,g:XR of the equation f(x+g(x)y)=f(x)f(y). Our result refers to papers of J. Chudziak (2006) [14] and J. Brzd?k (2003) [11].  相似文献   

19.
In this paper, we provide oscillation properties of every solution of the neutral differential equation with positive and negative coefficients
[x(t)−R(t)x(tr)]+P(t)x(tτ)−Q(t)x(tσ)=0,  相似文献   

20.
In this paper, we study the existence of stationary solutions to the Vlasov-Poisson-Boltzmann system when the background density function tends to a positive constant with a very mild decay rate as |x|→∞. In fact, the stationary Vlasov-Poisson-Boltzmann system can be written into an elliptic equation with exponential nonlinearity. Under the assumption on the decay rate being (ln(e+|x|))α for some α>0, it is shown that this elliptic equation has a unique solution. This result generalizes the previous work [R. Glassey, J. Schaeffer, Y. Zheng, Steady states of the Vlasov-Poisson-Fokker-Planck system, J. Math. Anal. Appl. 202 (1996) 1058-1075] where the decay rate is assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号