首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aromatic nucleophilic substitution (SNAr) reactions have been known to be regioselective to the para position on a variety of substituted perfluorobenzenes. In the current study, a series of fluoroaryl 1, 3, 4-oxadiazole derivatives substituted with different para terminal ethers were synthesized using SNAr chemistry to afford fluorescent and thermally reversible low molecular weight organogelators (LMWOs). SNAr was used to synthesize these highly fluorinated organogelators in high purity and good yields starting from pentafluorobenzoic acid and 4′-hydroxy-4-biphenylcarbonitrile. These fluorinated 1, 3, 4-oxadiazole derivatives were characterized by elemental analysis, FTIR, and 1H, 13C, and 19F NMR spectroscopy. The photophysical properties of those organogelators were described. Both UV–visible absorption and fluorescence spectral profiles displayed a solvatochromic and solvatofluorochromic properties. The absorption maxima for the developed organogelators were monitored in the range of 260–289 nm, whereas the emission maxima were monitored in the range of 278–305 nm. The best gelation properties were monitored for the hexyloxy-substituted 2-(biphenylyl)-5-(perflurophenyl)-1, 3, 4-oxadiazole gelator in different solvents with critical gel concentrations in the range of 1.86–5.07 mM. The self-assembly process was monitored to occur via van der Waals forces and π-π stacks to result in gelation of solvents. Scanning electron microscope (SEM) demonstrated nanofiber-like structures (350–550 nm). The thermal stability of the hexyloxy-substituted organogel was monitored at 48 °C. Both cytotoxicity and antimicrobial activity of the produced fluoroaryl 1, 3, 4-oxadiazole derivatives were explored to verify their potential use for biomedical applications, such as drug delivery and bioimaging.  相似文献   

2.
The synthesis and structure-property correlation of poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA) conjugates with various architectures including random, block, branched or star-like structures and compositions have been thoroughly explored. However, related synthesis and structure-property data are still lacking for comb-like PHPMA. In this work, we report the synthesis of comb-like PHPMA copolymer-doxorubicin (DOX) conjugates with different backbone/side-chain lengths and location of drug moieties. Well-defined comb-like PHPMA-DOX conjugates are obtained via the combination of controlled radical polymerization and fractional precipitation techniques. The influences of structural factors on the biological properties such as cellular uptake, blood circulation and tumor accumulation have been investigated. Long blood circulation and efficient tumor accumulation can be achieved by proper control of the comb number, length and location of drug moieties. These facile comb-like structures possess great potentials in future theranostics for brachytherapy or surgical navigation.  相似文献   

3.
The clinical impact of peptides that accumulate in tumours is determined by the number of particle emitting or paramagnetic isotopes attached. Therefore, attempts should be made to increase the cargo capacity of the peptide carriers. A general synthetic route to conjugates is described that allows insertion of multiple DOTA (1,4,7,10-tetraazacyclododecane-N′,N″,N?,N?-tetraacetic acid) moieties at the N-terminal end of the cyclic peptide Tyr3-octreotate. The peptide moiety was assembled by Fmoc solid phase synthesis and oxidised to form the cyclic disulfide. Subsequently, the required number of DOTA-tris tert-butyl ester chelating units were attached to the side chains of lysines. The conjugates were purified and thoroughly studied by RP-HPLC, size exclusion HPLC and mass spectrometry. The labelling of the novel conjugates and of DOTA0-Tyr3-octreotate (DOTATATE) was exemplified for 90Y and 111In. The methodology described here allows the versatile introduction of multiple DOTA chelates into a peptide sequence, thus, introducing a new scope to the receptor affine peptides that can be synthesised using solid phase synthesis.  相似文献   

4.
A series of copolymers comprising a terpyridine ligand and various functional groups were synthesized toward integrating a Co‐based molecular CO2 reduction catalyst. Using porous metal oxide electrodes designed to host macromolecules, the Co‐coordinated polymers were readily immobilized via phosphonate anchoring groups. Within the polymeric matrix, the outer coordination sphere of the Co terpyridine catalyst was engineered using hydrophobic functional moieties to improve CO2 reduction selectivity in the presence of water. Electrochemical and photoelectrochemical CO2 reduction were demonstrated with the polymer‐immobilized hybrid cathodes, with a CO:H2 product ratio of up to 6:1 compared to 2:1 for a corresponding “monomeric” Co terpyridine catalyst. This versatile platform of polymer design demonstrates promise in controlling the outer‐sphere environment of synthetic molecular catalysts, analogous to CO2 reductases.  相似文献   

5.
The synthesis of novel ruthenium(II) bipyridine or terpyridine complexes bearing an increasing number of pyrene or toluyl moieties is described. The ruthenium complexes are constructed in a first step with ligands bearing the required bromine functions, followed in a second step by stepwise grafting of 1-ethynylpyrene or 4-ethynyltoluene promoted by Pd(0). A complex bearing a protected triethylsilylacetylene function was also prepared. In situ deprotection of this function with K2CO3 and cross-coupling with 1-bromopyrene afforded a soluble complex in which two pyrene moieties are linearly linked via ethynyl spacers to one of the bipyridine ligands. These highly coloured complexes exhibit well defined absorption and emission properties in solution at both rt and 77 K.  相似文献   

6.
This paper reports on the cell uptake and trafficking properties of a series of non‐covalent polymer–drug conjugates. These nanomedicines are composed of a poly(N‐(2‐hydroxypropyl)methacrylamide) backbone functionalized with multiple copies of a drug. The drug moieties are attached to the polymer via a non‐covalent, so called coiled coil motif, which is formed by heterodimerization of two complementary peptide strands, one of which is attached to the polymer carrier and the other to the drug. Cytotoxicity and FACS experiments, which were carried out with model anticancer drug or fluorophore conjugates, provided insight into the cell uptake and trafficking behavior of these conjugates.

  相似文献   


7.
A series of 1,1′-disubstituted ferrocenoyl peptides incorporating dipeptide sidearms has been synthesized and studied electrochemically. The target peptides include ferrocene as an electrochemical reporter, sulfur-containing amino acids (l-methionine, S-methyl-l-cysteine, S-trityl-l-cysteine, S-benzhydryl-l-cysteine) as metal binding agents, and amino acids with non-polar side chains (l-alanine, l-valine, l-phenylalanine) as spacers between reporter and metal binding groups. Ferrocene/dipeptide conjugates were prepared using solution phase peptide synthesis methods employing a BOC-protecting group strategy and HBTU- (O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate) mediated peptide coupling. The electrochemical properties of these 1,1′-substituted ferrocenoyl peptides have been characterized using cyclic voltammetry. All exhibit fully reversible one electron oxidation steps; forward sweep half wave peaks (EF), reverse sweep half wave peaks (ER), peak separations (ΔEP) and half wave potentials (E1/2) are reported. Finally, towards the goal of utilizing ferrocenoyl peptides to detect heavy metals in solution, the response of these ferrocene/dipeptide conjugates to metal cations (zinc(II), mercury(II), cadmium(II), lead(II), silver(I)) has been examined. Monitoring changes in the potential of the Fe(II)/Fe(III) redox couple to follow peptide/metal interactions, we have probed the influence of the spacer unit between the redox reporter and the metal-binding amino acid, and shown that these systems respond to mercury(II) more strongly than to other heavy metal ions.  相似文献   

8.
Four meso-furyl BODIPY-ferrocene conjugates 14 in which one or more ferrocene groups were connected directly to BODIPY core or meso-furyl group were synthesized by coupling of appropriate bromo meso-furyl BODIPYs with α-ethynylferrocene under mild Pd(0) coupling conditions. The compounds were characterized by HR-MS mass, NMR, absorption, electrochemistry and fluorescence techniques. The absorption studies of compounds 14 showed charge transfer band in addition to BODIPY absorption bands indicating that the BODIPY and ferrocene moieties interact within the conjugates. On the other hand, the charge transfer band is absent in meso-phenyl BODIPY-ferrocene conjugate due to the orthogonal arrangement of ferrocene appended meso-phenyl group with BODIPY core which prevents the interaction between the two moieties. The electrochemical studies showed strong oxidation due to ferrocene moiety and reduction due to meso-furyl BODIPY unit. The compounds 3 and 4 which contain two and three ferrocenyl groups respectively were oxidized at the same potential with two and three electrons involved in the redox process. The compounds 14 are weakly fluorescent due to electron transfer from ferrocene unit to BODIPY unit. However, the fluorescence can be restored by oxidizing the ferrocene to ferrocenium ion which prevents the electron transfer between the two moieties. The computational studies support the experimental results.  相似文献   

9.
Polymer–peptide conjugates (also known as biohybrids) are attracting considerable attention as injectable materials owing to the self‐assembling behavior of the peptide and the ability to control the material properties using the polymer component. To this end, a simple method for preparing poly(ethylene oxide)‐oligophenylalanine polymer–peptide conjugates (mPEOm‐Fn‐OEt) using isobutylchloroformate as the activating reagent has been identified and developed. The synthetic approach reported employs an industrially viable route to produce conjugates with high yield and purity. Moreover, the approach allows judicious selection of the precursor building blocks to produce libraries of polymer–peptide conjugates with complete control over the molecular composition. Control over the molecular make‐up of the conjugates allows fine control of the physicochemical properties, which will be exploited in future studies into the prominent self‐assembling behavior of such materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4853–4859  相似文献   

10.
A series of chiral fluorinated liquid-crystalline elastomers (LCEs) IP-VIP are prepared by 4-cyano-3-fluorophenyl 4′-(undec-10-enoyloxy)biphenyl-4-carboxylate, isosorbide bis(4-allyloxybenzoate) and 2,4,6,8-tetramethylcyclotetrasiloxane via Pt-catalyzed hydrosilylation. The chiral crosslinking moieties increase from IP to IVP. The elastomers IP, IIP, and IIIP containing low content of chiral crosslinking moieties display SC * liquid-crystalline phase, but IVP, VP, and VIP do not show SC * phase except for N* mesophase. The mesophase is testified according to typical diffractogram measured by X-ray diffraction (XRD) analysis. The layer spacings of the LCEs decrease from IP (d-spacing of 34.2 Å) to VIP (d-spacing of 31.6 Å) with increase of chiral crosslinking groups in the polymers systems. Moreover, the optical properties are performed by ultraviolet–visible–near-infrared spectrophotometry. VP and VIP containing the most chiral crosslinking moieties display maximum reflection in near infrared spectra in the measurement of optical properties, while IP, IIP, IIIP, and IVP do not show obvious maximum reflection. It is interesting that a specific reflection of circularly polarized light appears along with a changing mesophase due to high enough concentration of chiral crosslinking dopants for VP and VIP. All these results suggest that the chiral crosslinking moieties exert influence on the structures of these kinds of LCEs.  相似文献   

11.
In this report, we have synthesized organic/inorganic hybrid peptide–poly(?‐caprolactone) (PCL) conjugates via ring opening polymerization (ROP) of ?‐caprolactone (CL) in the presence of two sequence defined peptide initiators, namely POSS‐Leu‐Aib‐Leu‐NH2 (POSS: polyhedral oligomeric silsesquioxane; Leu: Leucine; Aib: α‐aminoisobutyric acid) and OMe‐Leu‐Aib‐Leu‐NH2. Covalent attachment of peptide segments with the PCLs were examined by 1H and 29Si NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and FTIR spectroscopy. Supramolecular inclusion complexations of synthesized peptide‐PCL conjugates with α‐cyclodextrin (α‐CyD) were studied to understand the effect of POSS/OMe‐peptide moieties at the PCL chain ends. Inclusion complexation of peptide‐PCL conjugates with α‐CyD produced linear polypseudorotaxane, confirmed by 1H NMR, FTIR, powder X‐ray diffraction (PXRD), polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Extent of α‐CyD threading onto the hybrid peptide‐PCL conjugated polymers is less than that of α‐CyD threaded onto the linear PCL. Thus, PCL chains were not fully covered by the host α‐CyD molecules due to the bulky POSS/OMe‐peptide moieties connected with the one edge of the PCL chains. PXRD experiment reveals channel like structures by the synthesized inclusion complexes (ICs). Spherulitic morphologies of POSS/OMe‐peptide‐PCL conjugates were fully destroyed after inclusion complexation with α‐CyD and tiny nanoobjects were produced. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3643–3651.  相似文献   

12.
(Oligopyridine)ruthenium(II) complexes have been widely used in dye sensitized solar cells and other sophisticated optical devices due to their outstanding photophysical properties and their chemical stability. Herein, we describe the longitudinal extension of our previously reported bis(terpyridine)ruthenium(II) amino acid [Ru(tpy–NH2)(tpy–COOH)]2+ (tpy = 4′‐substituted 2,2′:6′,2″‐terpyridine) by insertion of para‐phenylene spacers –C6H4– between the terpyridine and the functional groups. The influence of the para‐phenylene spacer on the absorption and emission properties is investigated using UV/Vis absorption and emission spectroscopy and is discussed within a qualitative molecular orbital picture.  相似文献   

13.
The synthesis of 4′-(4?-benzo-15-crown-5)-methyloxy-2,2′:6′,2″-terpyridine (L) and is complexes with cobalt(II) and zinc(II) [CoL2](ClO4)2 · 3H2O (I) and [ZnL2](ClO4)2 · 3H2O (II) was described. For L and its complexes, the parameters of electronic absorption spectra in acetonitrile were determined and 1H NMR signals were assigned. The structures of I and II were determined by X-ray crystallography. Compounds I and II are isostructural and consist of complex cations [ML2]2+ (M = Co, Zn), ClO 4 ? anions, and crystal water molecules. The M atoms are located in special positions on twofold axes. The M atoms are surrounded by six N atoms of the terpyridine moieties of two organic molecular ligands. The M-N distance for the N(2) atoms of the central rings of the terpyridine moieties in both structures is shorter than for the side rings. The coordination polyhedra of the M atoms can be described as severely distorted octahedra. The major distortion of the octahedra is that the N…N distances in a terpyridine moiety are considerably shorter than those between the atoms of different moieties. The maximal deviation of the terpyridine atoms from the mean-square planes through these atoms is observed for the C(2) atom: 0.103(3) and 0.106(4) Å in I and II, respectively. The Co(1) and Zn(1) atoms are at a distance of, respectively, 0.1682(14) and 0.1415(17) Å from the corresponding planes.  相似文献   

14.
A homologous series of oligo(amide–triazole)s (OAT) [ OAT‐CO2H‐2 n and OAT‐COPrg‐(2 n +1) ] with an increasing number of primary amide (CONH) and triazole hydrogen‐bonding functionalities was prepared by an iterative synthetic procedure. It was found that their self‐assembly and thermoreversible gelation strength had a strong correlation to the number of hydrogen‐bonding moieties in the oligomers. There also existed a threshold value of the number of CONH units, above which all the oligomers became organogelators. Hence, oligomers with ≤4 CONH units are devoid of intermolecular hydrogen bonding and also non‐organogelating, whereas those that contain >4 CONH units show intermolecular association and organogelating properties. For the organogelators, the Tgel value increases monotonically with increasing number of CONH units. On the basis of FTIR measurements, both the CONH and triazole C? H groups were involved in the hydrogen‐bonding process. A mixed xerogel that consisted of a 1:1 weight ratio of two oligomers of different lengths ( OAT‐CO2H‐6 and OAT‐CO2H‐12 ) was found to show microphase segregation according to differential scanning calorimetry, thus indicating that oligomers that bear a different number of hydrogen‐bonding units exhibited self‐sorting to maximize the extent of intermolecular hydrogen bonding in the xerogel state.  相似文献   

15.
4H-Chromene and 1,4-naphthoquinone systems are generally considered to be medicinally privileged scaffolds. We have designed novel conjugates that incorporated both these scaffolds, as such conjugates exhibit unique biological properties reflecting those due to individual units and collective presence. In this work, we have achieved facile, efficient, and high yielding synthesis of 19 such conjugates from readily available 2-alkylamino-4-methylsulfanyl-3-nitro-4H-chromenes and 2-hydroxynaphthalene-1,4-dione. Highly polar nitroketene-O,N-acetal unit present in the conjugates is designed to prevent crossing blood brain barrier. We have conducted structure activity relationship (SAR) studies based on initial antimicrobial screening of a set of ten conjugates against three Gram positive bacteria [Bacillus Subtilis, Staphylococcus aureus (MSSA), Staphylococcus Escherichia coli), and two fungi (Aspergillus niger, Candida albicans). The SAR studies revealed that the conjugates with halogens at C(6) and C(8) positions of the 4H-chromene ring having C(2)NMe group display impressive activity, almost equal to that of standard drugs. None of the conjugates, however, showed antimalarial activity, although they possess 2-hydroxy-1,4-naphthoquinone unit.  相似文献   

16.
Molecular tweezers based on calix[4]arene- or thiacalix[4]arene-porphyrin conjugates have been prepared starting from tetraformyl calixarenes and aminoporphyrin moieties. As proven by NMR and UV/vis titration experiments, these compounds form 1:1 complexes with C60 and C70 fullerenes in solution while possessing a high selectivity towards fullerene C70.  相似文献   

17.
Metabolic reactions that occur at alkylamino moieties may provide insight into the roles of these moieties when they are parts of drug molecules that act at different receptors. N-dealkylation of N,N-dialkylamino moieties has been associated with retaining, attenuation or loss of pharmacologic activities of metabolites compared to their parent drugs. Further, N-dealkylation has resulted in clinically used drugs, activation of prodrugs, change of receptor selectivity, and providing potential for developing fully-fledged drugs. While both secondary and tertiary alkylamino moieties (open chain aliphatic or heterocyclic) are metabolized by CYP450 isozymes oxidative N-dealkylation, only tertiary alkylamino moieties are subject to metabolic N-oxidation by Flavin-containing monooxygenase (FMO) to give N-oxide products. In this review, two aspects will be examined after surveying the metabolism of representative alkylamino-moieties-containing drugs that act at various receptors (i) the pharmacologic activities and relevant physicochemical properties (basicity and polarity) of the metabolites with respect to their parent drugs and (ii) the role of alkylamino moieties on the molecular docking of drugs in receptors. Such information is illuminative in structure-based drug design considering that fully-fledged metabolite drugs and metabolite prodrugs have been, respectively, developed from N-desalkyl and N-oxide metabolites.  相似文献   

18.
《中国化学快报》2022,33(8):4107-4110
Novel peptide-fentanyl analogue conjugates were synthesized by the covalent coupling of carfentanyl derivatives to the C-terminus or N-terminus of the conformationally constrained dermorphin tetrapeptide BVD03 via a chemical linker. The carfentanyl-related analogues displayed distinct binding and functional activities at µ/δ opioid receptors (MOR/DOR) and antinociceptive effects when conjugated to the peptide. The most potent compound, SW-LJ-11, displayed mixed MOR/DOR agonist properties in the low nanomolar range and significant analgesic efficacy in vivo in four classic mouse models of pain. Interestingly, SW-LJ-11 did not exhibit any physical dependence or respiratory depression, in contrast to an equipotent analgesic dose of morphine or BVD03, indicating that the use of opioid peptide–fentanyl analogue conjugates as dual MOR/DOR agonists may be a promising strategy for obtaining safer opioids.  相似文献   

19.
Several effective phase-selective gelators (PSGs) have been developed from a series of cheap and easy-to-make sorbitol-based compounds for the removal of many oils from their biphasic mixtures with water. The dominant factors that drive gelation have been studied using FTIR and temperature-dependent 1H NMR spectra. Additionally, the case of PSGs exhibit significant self-healing properties that can recover the gelatin block and hence provide a more flexible approach for oil-spill recovery. The highly effective phase-selective performance and self-healing properties of these organogelators indicate the potential and promising applicability in oil-spill recovery.  相似文献   

20.
A series of peptides with an alternating sequence of alkoxyamine conjugated lysine and glycine residues were synthesized by classical solution phase peptide coupling. The resulting peptides containing up to eight alkoxyamine moieties were used as initiators in nitroxide-mediated polymerization (NMP) to obtain peptide-polymer conjugates with well defined linear peptide backbones and a defined number of polymeric side chains. Polymerization of styrene and N-isopropylacrylamide (NIPAM) occurred in a highly controlled fashion. Molecular weight and polydispersity index (PDI) were determined by gel permeation chromatography (GPC). Aggregation behaviour of these hybrid materials was investigated by dynamic light scattering (DLS) and atomic force microscopy (AFM). Depending on composition, number and length of the polymer side chains, the conjugates aggregate to different topologies. Whereas peptide-polystyrene conjugates may aggregate to so called honeycomb structures, peptide-poly-N-isopropylacrylamide conjugates show differentiated aggregation behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号