首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silica-metal nanostructures consisting of silica cores and metal nanoshells attract a lot of attention because of their unique properties and potential applications ranging from catalysis and biosensing to optical devices and medicine. The important feature of these nanostructures is the possibility of controlling their properties by the variation of their geometry, shell morphology and shell material. This review is devoted to silica-noble metal core-shell nanostructures; specifically, it outlines the main methods used for the preparation and surface modification of silica particles and presents the major strategies for the formation of metal nanoshells on the modified silica particles. A special emphasis is given to the St?ber method, which is relatively simple, effective and well verified for the synthesis of large and highly uniform silica particles (with diameters from 100 nm to a few microns). Next, the surface chemistry of these particles is discussed with a special focus on the attachment of specific organic groups such as aminopropyl or mercaptopropyl groups, which interact strongly with metal species. Finally, the synthesis, characterization and application of various silica-metal core-shell nanostructures are reviewed, especially in relation to the siliceous cores with gold or silver nanoshells. Nowadays, gold is most often used metal for the formation of nanoshells due to its beneficial properties for many applications. However, other metals such as silver, platinum, palladium, nickel and copper were also used for fabrication of core-shell nanostructures. Silica-metal nanostructures can be prepared using various methods, for instance, (i) growth of metal nanoshells on the siliceous cores with deposited metal nanoparticles, (ii) reduction of metal species accompanied by precipitation of metal nanoparticles on the modified silica cores, and (iii) formation of metal nanoshells under ultrasonic conditions. A special emphasis is given to the seed-mediated growth, where metal nanoshells are formed on the modified silica cores with deposited metal nanoparticles. This strategy assures a good control of the nanoshell thickness as well as its surface properties.  相似文献   

2.
An efficient and facile method to synthesise silica nanorattles with multiple noble metal (Au and Pd) cores by a simultaneous etching and growth route has been developed. In this strategy, a dual‐functional alkylaminosilane was adopted to form the middle layer of solid organic–inorganic hybrid solid‐silica spheres (HSSSs), which enabled the selective etching of the middle hybrid layer of the HSSSs and the in situ growth of metal nanoparticles (NPs) inside the cavity in a one‐step hydrothermal reaction. By adjusting the pH values of the reaction system, the metal NPs could be grown exclusively inside the silica nanorattles, resulting in a high atomic utilisation of the noble metals. The size and number of Au cores were tunable by manipulating the initial concentration of HAuCl4. The prepared silica nanorattles with Au cores were successfully applied to the catalytic reduction of 4‐nitrophenol and showed high catalytic activity and cycle stability. Catalysts with multiple gold cores exhibited superior catalytic activity to those with a single gold core, probably because they possess smaller Au cores with greater surface area.  相似文献   

3.
Silica beads with average diameters of 40-600 nm were prepared, and Ru(bpy)3(2+) complexes were incorporated into the beads. These beads were coated by silver layer by layer to generate porous but continuous metal nanoshells. The thicknesses of these metal shells were 5-50 nm. The emission band from the dyes in the silica cores was more narrow and the intensity was enhanced with growth of silver shell thickness due to coupling of the emission light from Ru(bpy)3(2+) in the cores with the metal plasmon from the silver shells. The enhancement of emission intensity was also dependent on the size of the silica core, showing that the enhancement efficiency decreased with an increase in the size of the silica beads. Lifetime measurements support the coupling mechanism between the dye and metal shell. This study can be used to develop novel dye-labeled metal particles with bright and narrow emission bands.  相似文献   

4.
Size tunable and structure tailored core-shell-shell nanospheres containing silica cores, gold nanoparticle shells, and controlled thicknesses of smooth, corrugated, or porous silica shells over the gold nanoparticles have been synthesized. The synthesis involved the deposition of gold nanoparticles on silica cores, followed by sol-gel processing of tetraethoxysilane (TEOS) or sodium silicate to form dense or porous silica shells, respectively, over the gold nanoparticles. The structures and sizes of the resulting core-shell-shell nanospheres were found to heavily depend on the sizes of the core nanoparticles, the relative population of the gold nanoparticles on each core, and the concentration of TEOS. While a higher TEOS concentration resulted in thicker and more uniform silica shells around individual larger silica cores (approximately > or =250 nm in diameter), the same TEOS concentration resulted in aggregated and twin core-shell-shell nanostructures for smaller silica cores (approximately < or =110 nm in diameter). The thinner silica shells were synthesized by using a lower TEOS concentration. By using sodium silicate (Ung et al. J. Phys. Chem. B 1999, 103, 6770), the porous silica shells were synthesized. Controlled chemical etching of the core-shell-shell nanoparticles with an aqueous KCN solution resulted in corrugated silica shells around the gold nanoparticles or corrugated silica nanospheres with few or no gold nanoparticles. This has allowed synthesis of new types of core-shell-shell nanoparticles with tailored corrugated shells. The nanoporous silica shells provided accessible structures to the embedded metal nanoparticles as observed from the electrochemical response of the gold nanoparticles.  相似文献   

5.
A "brick-and-mortar" assembly approach for creating porous carbon and carbon/metal oxide fibers on the micron scale with well-defined pore structure and interface is presented. A series of monodisperse silica@polyacrylonitrile (PAN) and silica@metal oxide@PAN core/shell particles were synthesized by emulsion polymerization and assembled into organic-inorganic composite fibers through a simple ice-templating strategy with the assistance of polyvinyl alcohol. Porous carbon and carbon/metal oxide fibers with well-controlled pores and interfaces were created by oxidative stabilization and carbonization of composite fibers followed by removal of silica cores with hydrofluoric acid or concentrated alkali. The pore structure and the carbon/metal oxide interfaces of the fibers impart to the fibers' lightweight and potential applications in catalysis, electrochemical energy, and gas or liquid separations and storage.  相似文献   

6.
Nearly monodisperse SiO2/TiO2/SiO2 multiply coated submicrospheres with nearly monodisperse silica submicrospheres as cores, thick titania layers, and thin silica skin were prepared to increase the refractive index of complex submicrospheres while keeping their near monodispersity and perfect surface properties. Nearly monodisperse colloidal silica submicrospheres as cores with a diameter of 200 nm were synthesized by a seeding technique on the basis of the hydrolysis of tetraethyl orthosilicate (TEOS) in an aqueous ethanol solution with ammonia as catalyst. On the basis of the hydrolysis of tetrabutyl orthotitanate, a procedure combining continuous feeding with multistep coating was determined to prepare titania coatings about 40 nm thick and increase the refractive index of the complex submicrospheres. The hydrolysis of TEOS was still used to get the outmost silica coating about 10 nm thick on titania coated silica submicrospheres to eliminate random aggregation caused by the TiO2 surface properties of the TiO2/SiO2 complex submicrospheres during the final fabrication of photonic crystals.  相似文献   

7.
In this article, we demonstrated the synthesis of metallodielectric composite particles comprising a metal shell on a dielectric core and an outer coating of an insulating dielectric layer by depositing silver on silica supporting cores followed by coating of titania. A combination of surface reaction and surface seeding techniques is exploited for the formation of a complete silver shell on silica spheres. The additional outer coating of titania on silver shell particles is then performed by hydrolyzing tetra-n-butyl titanate in ethanol at room temperature. The morphologies of silver shells and titania coating are studied with electron microscopy, and their existences are confirmed with X-ray diffraction and energy-dispersive X-ray measurement.  相似文献   

8.
Dye-doped silica nanoparticles (C dots) were synthesized in reverse microemulsions and used to quantitatively examine DNA cleavage in the presence of transition metal ions. The cores were synthesized as fluorescein isothiocyanate (FITC)-doped silica nanoparticles and the shells' surfaces were modified with single-stranded DNA oligomers tagged with Cy5 fluorophores. DNA cleavage induced by heavy metal ions was estimated by comparing the fluorescence of Cy5 before and after reaction with metal ions. For this, a lab-built laser-induced fluorescence microscope equipped with a charge coupled device (CCD) camera, for imaging, and photomultiplier tube, for photon counting, was used. FITC fluorescence from the core was measured as an internal standard to compensate for possible loss of the beads during the treatment. The cleavage of DNA in air in the presence of Pb(2+), Cd(2+), and Hg(2+) at 1 ng/mL was found to be 14%, 6%, and 20%, respectively, and was significantly reduced to below 9% under N(2) gas, indicating that the main cleavage source was oxygen in air. The most significant DNA cleavage was observed with the addition of hydrogen peroxide. This analytical method using dye-doped C dots provided convenient handling and quantification of the estimation of metal-DNA interaction with a detection limit of 34.9 pmol/mL.  相似文献   

9.
We reported the preparation of lifetime-tunable fluorescent metal nanoshells and used them as lifetime imaging agents for potential detection of multiple target molecules by a single cell imaging scan. These metal nanoshells were generated to have 40 nm silica cores and 10 nm silver shells. Three kinds of metal-ligand complexes tris(5-amino-1,10-phenanthroline)ruthenium(II) (Ru(NH(2)-Phen)(3) (2+)), tris(2,2'-bipyridine) ruthenium(II) (Ru(bpy)(3) (2+)), and tris(2,3-bis(2-pyridyl)pyrazine))ruthenium(II) (Ru(dpp)(3) (2+)) that have similar excitation and emission wavelengths but different lifetimes were respectively encapsulated in the cores of metal nanoshells for the purpose of fluorescence. Compared with the metal-free silica spheres, these metal nanoshells were found to display enhanced emission intensities and shortened lifetimes due to near-field interactions of Ru(II) complexes with the metal shells. The shortened lifetimes of these metal nanoshells were definitely unique relevant to the Ru(II) complexes: 10 ns for the Ru(Phen-NH(2))(3) (2+)-Ag nanoshells, 45 ns for the Ru(bpy)(3) (2+)-Ag nanoshells, and 200 ns for the Ru(dpp)(3) (2+)-Ag nanoshells. These lifetimes were longer than the lifetime of cellular autofluorescence (2 - 5 ns), so the emission signals of these metal nanoshells could be distinctly isolated from the cellular background on the lifetime cell images. Moreover, these lifetimes were also different from one another, resulting in the emission signals of three metal nanoshells could be distinguished from one another on the cell images. This feature may offer an opportunity to detect multiple target molecules in a single cell imaging scan when the metal nanoshells are bound with various targets in the cells.  相似文献   

10.
The use of monodispersed colloids in the polishing of copper and tantalum   总被引:3,自引:0,他引:3  
The properties of abrasive particles play a significant role in chemical mechanical polishing (CMP) of metal and dielectric films in semiconductor device manufacturing. This study investigates the effects of the particle size, shape, and hardness of abrasives on the polishing of copper and tantalum films in the presence of different slurry chemistries. Well-defined dispersions of uniform particles, including spherical silica of varying diameters, hematite of different shapes, and hematite cores coated with silica of different thicknesses, were prepared and used to polish blanket films of Cu and Ta. It was shown that the total surface area of the solids in the slurry controlled the rate of material removal by pure silica for both Cu and Ta, while the surface quality of the polished films was better when higher silica content was used. The shape or the aspect ratio of hematite particles had a minor effect on the removal rate. In contrast, when hematite particles coated with silica were employed in the polishing of Cu and Ta, the polish rate decreased with increasing thickness of the shell.  相似文献   

11.
Carbon capsules with hollow cores and mesoporous shells (HCMS) containing entrapped Au particles were prepared by template replication from solid core/mesoporous shell silica spheres with encapsulated Au particles. The resulting HCMS carbon capsules were then nanocast one step further to generate Au-trapping hollow core silica capsules with nanostructured shells.  相似文献   

12.
Wang J  Topham N  Wu CY 《Talanta》2011,85(5):2655-2661
Nano-sized metal particles, including both elemental and oxidized metals, have received significant interest due to their biotoxicity and presence in a wide range of industrial systems. A novel silica technology has been recently explored to minimize the biotoxicity of metal particles by encapsulating them with an amorphous silica shell. In this study, a method to determine silica coating efficiency on metal particles was developed. Metal particles with silica coating were generated using gas metal arc welding (GMAW) process with a silica precursor tetramethylsilane (TMS) added to the shielding gas. Microwave digestion and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) were employed to solubilize the metal content in the particles and analyze the concentration, respectively. Three acid mixtures were tested to acquire the appropriate digestion method targeting at metals and silica coating. Metal recovery efficiencies of different digestion methods were compared through analysis of spiked samples. HNO3/HF mixture was found to be a more aggressive digestion method for metal particles with silica coating. Aqua regia was able to effectively dissolve metal particles not trapped in the silica shell. Silica coating efficiencies were thus calculated based on the measured concentrations following digestion by HNO3/HF mixture and aqua regia. The results showed 14-39% of welding fume particles were encapsulated in silica coating under various conditions. This newly developed method could also be used to examine the silica coverage on particles of silica shell/metal core structure in other nanotechnology areas.  相似文献   

13.
Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.  相似文献   

14.
Reproducible detection of a target molecule is demonstrated using temporally stable solution-phase silica-void-gold nanoparticles and surface-enhanced Raman scattering (SERS). These composite nanostructures are homogeneous (diameter = 45 +/- 4 nm) and entrap single 13 nm gold nanoparticle cores inside porous silica membranes which prevent electromagnetic coupling and aggregation between adjacent nanoparticles. The optical properties of the gold nanoparticle cores and structural changes of the composite nanostructures are characterized using extinction spectroscopy and transmission electron microscopy, respectively, and both techniques are used to monitor the formation of the silica membrane. The resulting nanostructures exhibit temporally stable optical properties in the presence of salt and 2-naphthalenethiol. Similar SERS spectral features are observed when 2-naphthalenethiol is incubated with both bare and membrane-encapsulated gold nanoparticles. Disappearance of the S-H Raman vibrational band centered at 2566 cm(-1) with the composite nanoparticles indicates that the target molecule is binding directly to the metal surface. Furthermore, these nanostructures exhibit reproducible SERS signals for at least a 2 h period. This first demonstration of utilizing solution-phase silica-void-gold nanoparticles as reproducible SERS substrates will allow for future fundamental studies in understanding the mechanisms of SERS using solution-phase nanostructures as well as for applications that involve the direct and reproducible detection of biological and environmental molecules.  相似文献   

15.
Characterization of polymer-coated silica particles by microelectrophoresis   总被引:1,自引:0,他引:1  
Electrophoretic mobility measurements have been used to characterize monodispersed colloidal particles of silica, silica coated with alumina (cores), of these cores incorporating a dye (pigments), and finally of pigments coated with polymers. The latter consisted of poly(divinylbenzene), of poly(vinylbenzyl chloride), and of their copolymers, synthesized directly on the core or pigment particles, with and without subsequent sulfonation.  相似文献   

16.
In order to solve the difficult problem of heterogeneity of different components in the procedure of ceramic preparation, a novel processing (heterogeneous nucleation-and-growth processing) was used to prepare homogeneous distribution powders. Composite coating particles consisting of alpha aluminum hydroxide (-Al(OH)3) cores (average particle size 0.42 m) with outer homogeneous amorphous silica layer are prepared by heterogeneous nucleation-and-growth processing. Effects of silica content in composite coating particles versus concentration of silicon tetraethoxide (TEOS), pH value, time and temperature are studied. The homogeneous amorphous silica layer on cores is confirmed by X-ray diffraction, transmission electron microscopy and zeta potential measurement.  相似文献   

17.
Silica-metal core–shell particles, as for instance those having siliceous core and nanostructured gold shell, attracted a lot of attention because of their unique properties resulting from combination of mechanical and thermal stability of silica and magnetic, electric, optical and catalytic properties of metal nanocrystals such as gold, silver, platinum and palladium. Often, the shell of the core–shell particles consists of a large number of metal nanoparticles deposited on the surface of relatively large silica particles, which is the case considered in this work. Namely, silica particles having size of about 600 nm were subjected to surface modification with 3-aminopropyltrimethoxysilane. This modification altered the surface properties of silica particles, which was demonstrated by low pressure nitrogen adsorption at ?196 °C. Next, gold nanoparticles were deposited on the surface of aminopropyl-modified silica particles using two strategies: (i) direct deposition of gold nanoparticles having size of about 10 nm, and (ii) formation of gold nanoparticles by adsorption of tetrachloroauric acid on aminopropyl groups followed by its reduction with formaldehyde.The overall morphology of silica–gold particles and the distribution of gold nanoparticles on the surface of modified silica colloids were characterized by scanning electron microscopy. It was shown that direct deposition of colloidal gold on the surface of large silica particles gives more regular distribution of gold nanopartciles than that obtained by reduction of tetrachloroauric acid. In the latter case the gold layer consists of larger nanoparticles (size of about 50 nm) and is less regular. Note that both deposition strategies afforded silica–gold particles having siliceous cores covered with shells consisting of gold nanoparticles of tunable concentration.  相似文献   

18.
We report the synthesis of well-dispersed core-shell Au@SiO(2) nanoparticles with minimal extraneous silica particle growth. Agglomeration was suppressed through consecutive exchange of the stabilizing ligands on the gold cores from citrate to L-arginine and finally (3-mercaptopropyl)triethoxysilane. The result was a vitreophilic, stable gold suspension that could be coated with silica in a biphasic mixture through controlled hydrolysis of tetraethoxysilane under L-arginine catalysis. Unwanted condensation of silica particles without gold cores was limited by slowing the transfer across the liquid-liquid interface and reducing the concentration of the L-arginine catalyst. In-situ dynamic light scattering and optical transmission spectroscopy revealed the growth and dispersion states during synthesis. The resulting core-shell particles were characterized via dynamic light scattering, optical spectroscopy, and electron microscopy. Their cores were typically 19 nm in diameter, with a narrow size distribution, and could be coated with a silica shell in multiple steps to yield core-shell particles with diameters up to 40 nm. The approach was sufficiently controllable to allow us to target a shell thickness by choosing appropriate precursor concentrations.  相似文献   

19.
The size and concentration of silica cores determine the size and concentration of silica/gold nanoshells in final preparations. Until now, the concentration of silica/gold nanoshells with Stober's silica core has been evaluated through the material balance assumption. Here, we describe a method for simultaneous determination of the average size and concentration of silica nanospheres from turbidity spectra measured within the 400-600 nm spectral band. As the refractive index of silica nanoparticles is the key input parameter for optical determination of their concentration, we propose an optical method and provide experimental data on a direct determination of the refractive index of silica particles n = 1.475 +/- 0.005. Finally, we exemplify our method by determining the particle size and concentration for 10 samples and compare the results with transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering data.  相似文献   

20.
Gold nanoparticles have been conformally coated with amorphous silica (using a sol-gel method) and then an organic polymer (via surface-grafted, atom transfer radical polymerization) to form spherical colloids with a core-double-shell structure. The thickness of silica and polymer shells could be conveniently controlled in the range of tens to several hundred nanometers by changing the concentration of the reagent and/or the reaction time. Selective removal of the silica layer (through etching in aqueous HF) led to the formation of hollow polymer beads containing movable gold cores. This new form of core-shell particles provides a unique system for measuring the feature size and transport property associated with hollow particles. In one demonstration, we showed that the thickness of a closed polymer shell could be obtained by mapping the electrons backscattered from the core and shell. In another demonstration, the plasmon resonance band of the gold cores was used as an optical probe to follow the diffusion kinetics of chemical reagents across the polymer shells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号