首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The directivity patterns of a pair of piezoelectric transducers for measuring the spatial correlation function of sound pressures produced by sources of thermal acoustic radiation in the megahertz frequency range are calculated. Sources in the form of a heated plane or strip are considered. The signal detection by two circular or rectangular piezoelectric transducers and by focusing transducers is studied. It is demonstrated that, for measuring the correlation function, the piezoelectric transducers must partially overlap. To determine the directivity pattern with a strong dependence on the distance between the heated object and the pair of piezoelectric transducers, focusing piezoelectric transducers should be used. The results obtained offer possibilities for a noninvasive measurement of the absorption coefficient of a medium and also for the realization of the previously proposed [20] passive acoustic thermotomograph, which does not use a priori information on the absorption coefficient of the medium.  相似文献   

2.
Hollow piezoelectric cylindrical shell transducers may be made directional for underwater acoustic applications by the use of suitable acoustical baffles and the operational bandwidth may be extended by using multiple resonant modes. A theoretical and experimental investigation was performed for circumferentially baffled piezoelectric cylindrical shell transducers operating in the zero and one modes of extensional vibration. The frequency responses and directivity patterns were analyzed under various conditions of energizing separate halves of electrodes. It was found that the broadest frequency response with nearly constant beamwidth can be obtained when the two halves of the piezoelectric ring are electromechanically excited 90 deg out-of-phase. The experimental results obtained with a proof-of-concept transducer were in good agreement with the theoretical predictions.  相似文献   

3.
R.E. Challis 《Ultrasonics》1982,20(4):168-172
Transient diffraction phenomena in the field of a piston transducer have been explained theoretically in terms of the direct and edge wave contributions to the piston response. Previous experimental studies by other workers have verified this concept for single cycles of 4 MHz radiation. Faster transients are difficult to study using thin piezoelectric transducers due to transducer resonance. Thick piezoelectric transducers of very low resonant frequency can be used to generate and receive step function acoustic transients with rise times of 20 ns or less and the problems of transducer resonance can be avoided. Experimental results are presented which show that when such a step function is propagated between two thick transducers the time course of the received wave can be explained in terms of the direct wave/edge wave model in conjunction with the theory of transient reverberations in piezoelectric elements.  相似文献   

4.
In this study, we present a model study of guided wave dispersion and resonance behavior of an array of piezoelectric plates with arbitrary cross-sections. The objective of this work is to analyze the influence of the geometry of an element of a 1D-array ultrasound transducer on generating multi-resonance frequency so as to increase the frequency bandwidth of the transducers. A semi-analytical finite-element (SAFE) method is used to model guided wave propagation in multi-layered 1D-array ultrasound transducers. Each element of the array is composed of LiNbO3 piezoelectric material with rectangular or subdiced cross-section. Four-node bilinear finite-elements have been used to discretize the cross-section of the transducer. Dispersion curves showing the dependence of phase and group velocities on the frequency, and mode shapes of propagating modes were obtained for different geometry consurations. A parametric analysis was carried out to determine the effect of the aspect ratio, subdicing, inversion layer and matching layers on the vibrational behavior of 1D-array ultrasound transducers. It was found that the geometry with subdiced cross-section causes more vibration modes compared with the rectangular section. Modal analysis showed that the additional modes correspond to lateral modes of the piezoelectric subdiced section. In addition, some modes have strong normal displacements, which may influence the bandwidth and the pressure field in front of the transducer. In addition, the dispersion curves reveal strong coupling between waveguide modes due to the anisotropy of the piezoelectric crystal. The effect of the matching layers was to cluster extensional and flexural modes within a certain frequency range. Finally, inversion layer is found to have a minor effect on the dispersion curves. This analysis may provide a means to analyze and understand the dynamic response of 1D-array ultrasound transducers.  相似文献   

5.
高性能环境友好型无铅压电陶瓷及其应用是当前压电材料研究的热点之一,为了探究其在水声换能器领域的应用潜力,该文对铌酸钾钠基无铅压电陶瓷和锆钛酸铅压电陶瓷纵振式换能器进行了对比研究。依据仿真结果优化结构尺寸,制作了两种换能器样机并测试了其在空气中和水中的电声性能。测试结果表明,铌酸钾钠基无铅压电陶瓷换能器的谐振频率为35kHz,最大发送电压响应为 151dB,声源级可达 190dB,在 26kHz~67kHz 的频率范围内发送电压响应的起伏不超过±4.5dB,谐振频率处-3dB 的指向性开角约为 76°。该无铅压电陶瓷换能器具有和锆钛酸铅压电陶瓷换能器相当的发射性能,有望推动无铅压电材料在水声换能器领域的应用进程。  相似文献   

6.
The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design and to model FGM piezoelectric transducers and to compare their performance with non-FGM ones. Analytical and finite element (FE) modeling of FGM piezoelectric transducers radiating a plane pressure wave in fluid medium are developed and their results are compared. The ANSYS software is used for the FE modeling. The analytical model is based on FGM-equivalent acoustic transmission-line model, which is implemented using MATLAB software. Two cases are considered: (i) the transducer emits a pressure wave in water and it is composed of a graded piezoceramic disk, and backing and matching layers made of homogeneous materials; (ii) the transducer has no backing and matching layer; in this case, no external load is simulated. Time and frequency pressure responses are obtained through a transient analysis. The material properties are graded along thickness direction. Linear and exponential gradation functions are implemented to illustrate the influence of gradation on the transducer pressure response, electrical impedance, and resonance frequencies.  相似文献   

7.
Multilayer ultrasonic transducers are widely being used for high power applications. In these applications, typical Langevin/Tonpilz structures without any adhesive bondings however have the disadvantage of limited bandwidth. Therefore adhesively-bonded structures are still a potential solution for this issue. In this paper, two-layer piezoelectric ceramic ultrasonic transducers with two different adhesive bondlines were investigated comparing to a single-layer transducer in terms of loss effects during operation with excitation signals sufficient to cause self-heating. The theoretical functions fitted to the measured time–temperature dependency data are compared with experimental results of different piezoelectric transducers. Theoretical analysis of loss characteristics at various surface displacements and the relationship with increasing temperature are reported. The effects of self-heating on the practical performance of multilayer ultrasonic transducers with adhesive bondlines are discussed.  相似文献   

8.
Evans MJ  Webster JR  Cawley P 《Ultrasonics》2000,37(8):589-594
The use of conical piezoelectric transducers as point acoustic sources has been investigated. It has been shown that transducers based on a design originally developed at the National Institute for Standards and Technology in the USA can be used as point transmitters over the frequency range of interest in acoustic emission measurements (100 kHz to around 1 MHz). They should, therefore, be suitable for use in experiments to calibrate structures so that acoustic emission source strengths can be determined. It has also been shown that measurements of the response of the transmitting transducer backing can be used to assess the coupling efficiency, and hence to remove concerns about inconsistent coupling affecting the calibration measurements. The results indicate that the variation of the backing response with coupling is due to a shift in the resonance frequencies of the transducer with the mechanical load impedance. If other transducers can be shown to behave in a similar fashion this effect could be used to measure coupling in standard acoustic emission and ultrasonic transducers.  相似文献   

9.
Piezoelectric transducers for dynamic overpressure measurements are commonly calibrated with static or quasistatic loads and the calibration is extrapolated to frequencies up to 30% of the resonant frequency of the piezoelectric crystal. Sinusoidal pressure generators are also used for dynamic calibration up to 500 Hz in the range of 3 MPa. This paper describes a method for dynamic calibration using transient overpressures, with rise time of 2 μsec and width 40 μsec, generated by exploding wires in air. The calibration is done in the range of 600 kPa.  相似文献   

10.
A Q-switched Nd:YAG laser has been used to generate reproducible acoustic displacements in metallic samples. The acoustic waveforms were initially detected by an absolute displacement-sensitive, capacitance transducer. The capacitance transducer was then replaced in turn by two piezoelectric ceramic transducers of different thickness and diameter. Comparison of waveforms from the two types of detector indicate that thick piezoelectric transducers are useful in the detection of fast rise-time displacement waveforms at metal surfaces. Their performance is optimized by making them as thick as possible, with a small area of contact with the surface.  相似文献   

11.
基于飞秒光频梳的压电陶瓷闭环位移控制系统   总被引:1,自引:0,他引:1       下载免费PDF全文
朱敏昊  吴学健  尉昊赟  张丽琼  张继涛  李岩 《物理学报》2013,62(7):70702-070702
利用飞秒光频梳、外腔可调谐半导体激光器和法布里-珀罗干涉仪建立了一套压电陶瓷亚纳米级闭环位移控制系统. 将可调谐半导体激光器锁定至光频梳, 通过精确调谐光频梳的重复频率, 实现了半导体激光器在其工作频率范围内的精密调谐. 利用Pound-Drever-Hall锁定技术将带有压电陶瓷的法布里-珀罗腔锁定至半导体激光器, 进而通过频率发生系统控制压电陶瓷产生亚纳米级分辨率的位移. 实验研究发现锁定至光频梳后可调谐半导体激光器1 s的Allan标准偏差为1.68×10-12, 将其在30.9496 GHz范围内进行连续闭环调谐, 可获得压电陶瓷的位移行程约为4.8 μm; 以3.75 Hz的步长扫描光频梳的重复频率, 实现了压电陶瓷的450 pm闭环位移分辨率并测定了压电陶瓷的磁滞特性曲线. 该系统不存在非线性测量误差, 且激光频率及压电陶瓷位移均溯源至铷钟频率源. 关键词: 光频梳 压电陶瓷 法布里-珀罗腔 可调谐半导体激光器  相似文献   

12.
A Janus-Ring(JR) transducer with two piezoelectric rings placed around a Janus driver is presented.The rings have radial vibration,whereas the Janus has longitudinal vibration,and a resonance of Helmholtz cavity is observed between them.By joining the three resonances,the working frequency bandwidth of the transducer is prominently widened.After simulation using finite element method,a prototype is finally fabricated and tested.Results show that in the working frequency of 1.8 to 8.0 kHz,the maximum transmitting voltage response(TVR) is 144 dB,and the fluctuations are less than 6 dB.Compared with traditional Janus-Helmholtz transducers,the JR transducer has the characteristics of wider bandwidth,greater TVR,and less fluctuations of TVR in working frequency band.  相似文献   

13.
J. G. Martner 《Ultrasonics》1969,7(4):234-237
Design considerations and operation of vibration-sensitive transducers that are brushed into place are described. These transducers are made of a slurry of crushed piezoelectric ceramic and a liquid binding material that becomes rigid upon exposure to the air. The resulting hard coating is electroded and polarized in place prior to its use as a vibration-detecting transducer. The parameters for optimum particle size, concentration and electrode shape are determined for transducers that are suitable for detecting vibration. Feasibility of the technique is determined by its use in detecting ultrasonic vibration of small rigid members. The technique permits deposition of coats less than 1mm thick with a particle concentration of up to 77 percent of active material. The sensitivities obtained are compared to those of solid piezoelectric materials.  相似文献   

14.
An air-coupled ultrasonic transducer is created by bonding a bulk piezoelectric element onto the surface of a thick plate with a wedge of power-law profile. The wedge is used to improve the ultrasonic radiation efficiency. The power-law profile provides a smooth, impedance-matching transition for the mechanical energy to be transferred from the thick plate to the air, through the large-amplitude flexural waves observed in the thinnest region of the wedge. The performance of the proposed transducer is examined numerically and compared to that of a design where the piezoelectric element is isolated and where it is affixed to a thin plate of uniform thickness. The numerical analysis is first focused on the free-field radiation of the transducers. Then, time-reversal experiments are simulated by placing the transducers inside a cavity of arbitrary shape with some perfectly reflecting boundaries. In addition to time-reversal mirrors, the proposed concept could be integrated in the design of phased arrays and parametric arrays.  相似文献   

15.
Zhou QF  Cannata J  Kirk Shung K 《Ultrasonics》2006,44(Z1):e607-e611
Using inversion domain engineering controlled by heating temperature, the LiNbO(3) (LNO) piezoelectric plate with both odd and even-order thickness-extensional modes can be excited simultaneously. Therefore, the inversion layer ultrasound transducer is expected to be capable of operating over a wider frequency range. In this paper, the electrical impedance and the acoustic characteristics of LiNbO(3) (LNO) inversion layer transducer have been studied by finite element modeling (FEM). The transducer designed for this study uses a 36 degrees rotated Y-cut LiNbO(3) thin plate with an active element thickness of approximately 100 microm. First the electrical and elastic properties of the 36 degrees rotated Y-cut LNO were obtained by transforming a basic piezoelectric matrix for Z-cut LNO. In order to validate the FEM using the transformed properties several pieces of pure and 50% inversion layer LNO were tested on the electrical impedance analyzer. The modeled impedance characteristics were consistent with the measured data. Next the model was used to design 50-60 MHz transducers using pure and 30% inversion LNO. Two lambda/4 matching layers and a Tungsten loaded epoxy backing were used in these designs. The modeled results show that an over 90% bandwidth transducer can be made with proper matching and 30% inversion layer.  相似文献   

16.
The large number of degrees of freedom in the design of piezoelectric transducers requires a theoretical model that is computationally efficient so that a large number of iterations can be performed in the design optimisation. The materials used are often lossy, and indeed loss can be used to enhance the operational characteristics of these designs. Motivated by these needs, this paper extends the one-dimensional linear systems model to incorporate frequency dependent elastic loss. The reception sensitivity, electrical impedance and electromechanical coupling coefficient of a 1–3 composite transducer, with frequency dependent loss in the polymer filler, are investigated. By plotting these operating characteristics as a function of the volume fraction of piezoelectric ceramic an optimum design is obtained. A device with a non-standard, high shear attenuation polymer is also simulated and this leads to an increase in the electromechanical coupling coefficient. A comparison with finite element simulations is then performed. This shows that the two methods are in reasonable agreement in their electrical impedance profiles in all the cases considered. The plots are almost identical away from the main resonant peak where the frequency location of the peaks are comparable but there is in some cases a 20% discrepancy in the magnitude of the peak value and in its bandwidth. The finite element model also shows that the use of a high shear attenuation polymer filler damps out the unwanted, low frequency modes whilst maintaining a reasonable impedance magnitude.  相似文献   

17.
压电换能器往往因受到温度与负载的影响,导致其谐振频率、反谐振频率和机械品质因数等特征参数发生变化。通过在压电换能器中设计用于调节的压电陶瓷片,并在调节压电陶瓷片两端外接电负载,可以实现压电换能器的频率调节,修正由于温度和负载导致的频率漂移。基于压电换能器的Mason等效电路,建立外接LC调节电路的压电换能器的谐振频率、反谐振频率模型,分析LC调节电路中调节电感对频率调节特性的影响;通过实验研究外接LC调节电路对可调压电换能器机械品质因数的影响,并验证调节电感对频率调节特性的影响。理论分析和实验研究的结果表明:随着调节电感的增大,调节电容对频率的调节灵敏度提高,可调压电换能器的频率调节宽度拓宽,但也会使压电换能器的机械品质因数降低。合理选择调节电感和调节电容能兼顾频率调节宽度和机械品质因数的要求。此研究可为后续自适应压电换能器的频率调节系统设计提供指导。   相似文献   

18.
Kim JO  Lee JG  Chun HY 《Ultrasonics》2005,43(7):531-537
This paper presents the vibration characteristics of the radial mode in spherical piezoelectric transducers. The differential equations of piezoelectric radial motion have been derived in terms of radial displacement and electric potential. Applying mechanical and electrical boundary conditions yielded a characteristic equation for radial vibration. Theoretical calculations of the fundamental natural frequency have been compared with numerical and experimental results for transducers of several sizes, and have shown a good agreement. This paper discusses the dependence of natural frequencies on the radius and thickness of the piezoelectric spheres and the difference between piezoelectric and elastic resonances. From the results it has been concluded that the natural frequency was not affected for the first radial mode but was reduced by the piezoelectric phenomenon. It has also been concluded that the natural frequency of the first radial mode depended mostly on the radius rather than on the thickness of the sphere whereas the natural frequency of the second radial mode depended mostly on the thickness rather than the radius.  相似文献   

19.
Lin S 《Ultrasonics》2006,44(1):109-114
In this paper, the Langevin longitudinal-flexural composite mode piezoelectric ultrasonic transducer is studied. This type of transducers consists of slender metal rods and longitudinally polarized piezoelectric ceramic rings. The resonance frequency equations for the longitudinal and flexural vibrations in the transducer are derived. By correcting the length of the metal slender rods, the simultaneous resonance of the longitudinal and flexural vibrations in the transducer is acquired. The experimental results show that the measured resonance frequencies of the transducers are in good agreement with the computed ones, and the measured resonance frequencies of the longitudinal and the flexural vibrations in the composite transducers are also in good agreement with each other.  相似文献   

20.
提出一种利用多模态耦合的低频、宽带、大功率的新型弯张换能器,其结构上将两椭圆的Ⅳ型弯张壳体沿长轴方向串联为一体,两组长压电陶瓷堆贯穿其中驱动。利用有限元软件设计并制作一款此新型换能器的样机,其工作频带通过耦合壳体前三阶弯曲模态及压电陶瓷堆纵振模态与壳体膜模态的复合模态展宽。经测试在1.4~6.0 kHz范围内,样机的发射电压响应大于128.5dB,声源级大于190dB。结果表明,此弯张换能器与只利用一阶弯曲模态的Ⅳ型弯张换能器相比不仅有更宽的工作带宽,还满足低频和大功率的声辐射要求。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号