首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We report single dot spectroscopy of cubic GaN/AlN self-assembled quantum dots. Typical linewidths of the zero-phonon line between 2 and 8 meV are observed and interpreted in terms of charge fluctuations around a given quantum dot. The phonon sideband contribution in this emission, even at low temperature, reveals the importance of the acoustic phonon broadening mechanism which controls the exciton dephasing and may impose the real limits to the optical properties of GaN single QDs emission.  相似文献   

2.
Density of states is studied by a ballistic electron emission microscopy/spectroscopy on self-assembled InAs quantum dots embedded in GaAs/AlGaAs heterostructure prepared by metal–organic vapor phase epitaxy. An example of integral quantum dot density of states which is proportional to superposition of a derivative of ballistic current–voltage characteristics measured at every pixel (1.05 nm×1.05 nm) of quantum dot is presented. For the two lowest observed energy levels of quantum dot (the maxima in density of states) the density of states is mapped and correlated with the shape of quantum dot. It was found that prepared quantum dots have a few peaks on their flatter top and a split of the lowest energy level can be observed. This effect can be explained by inhomogeneous (nonuniform) stress distribution in the examined quantum dot.  相似文献   

3.
The ac-transport properties of a one-dimensional quantum dot with non-Fermi liquid correlations are investigated. It is found that the linear photoconductance is drastically influenced by the interaction. While for weak interaction it shows peak-like resonances, in the strong interaction regime it assumes a step-like behavior. In both cases the photo-transport provides precise informations about the quantized plasmon modes in the dot. Temperature and voltage dependences of the sideband peaks are treated in detail. Characteristic Luttinger liquid power laws are found. Received 23 October 2001  相似文献   

4.
We introduce a quantum dot orbital tight-binding non-equilibrium Green’s function approach for the simulation of novel solar cell devices where both absorption and conduction are mediated by quantum dot states. By the use of basis states localized on the quantum dots, the computational real space mesh of the Green’s function is coarse-grained from atomic resolution to the quantum dot spacing, which enables the simulation of extended devices consisting of many quantum dot layers.  相似文献   

5.
非绝热消除条件下输出边频量子关联   总被引:1,自引:0,他引:1  
王飞  肖明 《光学学报》2012,32(12):1227001
考虑了双模腔内含有N个三能级V型原子的系综与两个量子化场之间的相互作用。在非绝热消除原子变量的条件下,分析了两个初始为相干态的输入场从腔内输出后的量子关联性质。结果表明在恰当的条件下,在中心频率处可以获得量子纠缠,但随合作参数的增加,中心频率处的纠缠变小甚至消失。与此同时,在高频区间则产生了一对边频量子纠缠。这是由于合作参数增加引起的真空拉比分裂导致了高频处获得量子关联。此外,通过调节量子化场的强度以及原子和场的反对称失谐,还可获得两对边频量子纠缠。这对边频量子关联的研究具有十分重要的价值。  相似文献   

6.
During the recent years semiconductor nanostructures have attracted considerable interest with respect to potential applications in quantum information processing. In particular, quantum dot molecules have been suggested to provide the building block of a quantum computer: forming quantum gates due to coherent coupling of two dots. The characteristic dependence of the splitting of ‘bonding’ and ‘anti-bonding’ states suggests coherent coupling of two InAs/GaAs quantum dots. Anti-crossings in the fine structure of excitons due to mixing of optically bright and dark states have been observed in Faraday configuration. In Voigt configuration the diamagnetic shift of the quantum dot molecule is enhanced compared to a single quantum dot. These findings altogether demonstrate the coherent coupling of exciton states in quantum dot molecules.  相似文献   

7.
The electronic transport in the quantum dot array for an arbitrary number of dots in which the quantum dot A is alternated with the quantum dot B is studied with the exact Green’s function calculation. The algebraic structures of the DC current, the differential conductance, and the density of states for the alternating A/B quantum dot array are obtained analytically. The results show that the two-step-like DC current, the two-main-peak-like differential conductance, and the multi-peak-like density of states will be sensitively modified by the number of dots and the difference for the one-electron level and the resonant width of the quantum dot A with ones of the quantum dot B.  相似文献   

8.
We report on the reversible electrical control of the magnetic properties of a single Mn atom in an individual quantum dot. Our device permits us to prepare the dot in states with three different electric charges, 0, +1e, and -1e which result in dramatically different spin properties, as revealed by photoluminescence. Whereas in the neutral configuration the quantum dot is paramagnetic, the electron-doped dot spin states are spin rotationally invariant and the hole-doped dot spins states are quantized along the growth direction.  相似文献   

9.
A theory of quasi-stationary states and lifetimes of electrons, holes, and excitons in an open cylindrical semiconductor quantum wire containing a quantum dot surrounded by two identical antidots (with potential barriers of finite height) is developed using the scattering matrix method. The energy spectra and lifetimes of electrons, holes, and excitons in a β-HgS/β-CdS/β-HgS/β-CdS/β-HgS nanoheterosystem are calculated and analyzed as functions of the geometric parameters of the quantum dot involved. It is demonstrated that an increase in the height of the quantum dot leads to a decrease in the energy of quasi-stationary exciton states of the Breit-Wigner type and to an increase in their lifetimes. The lifetime of exciton states is long enough for these states to be observed in the experiment.  相似文献   

10.
Electronic states in the valence band of a cylindrical ZnSe quantum dot are studied with allowance for the valence band mixing. Dependences of the wave functions and energy levels on the quantum dot radius are calculated. The influence of a magnetic field parallel to the quantum dot radius on the energy levels is also considered.  相似文献   

11.
We establish analogy between a microwave ionization of Rydberg atoms and a charge transport through a chaotic quantum dot induced by a monochromatic field in a regime with a potential barrier between dot contacts. We show that the quantum coherence leads to dynamical localization of electron excitation in energy so that only a finite number of photons is absorbed inside the dot. The theory developed determines the dependence of localization length on dot and microwave parameters showing that the microwave power can switch the dot between metallic and insulating regimes. ultiphoton ionization and excitation to highly excited states (e.g., Rydberg states)  相似文献   

12.
《Physics letters. A》1998,238(6):390-394
The one-phonon variational state is suitably applied to describe the ground state and excited states of the Fröhlich polaron bound to a quantum dot. A general analytical expression for the electronic energy spectra and the polaron binding energy for different electronic subband bound states in a quantum dot is presented and discussed with reference to the parameters of a real solid.  相似文献   

13.
Fast hybrid silicon double-quantum-dot qubit   总被引:1,自引:0,他引:1  
We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers S(2)=3/4 (S=1/2) and S(z)=-1/2, with the two different states being singlet and triplet in the doubly occupied dot. Gate operations can be implemented electrically and the qubit is highly tunable, enabling fast implementation of one- and two-qubit gates in a simpler geometry and with fewer operations than in other proposed quantum dot qubit architectures with fast operations. Moreover, the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.  相似文献   

14.
The emergence of half-integer filling-factor states, such as upsilon=5/2 and 7/2, is found in quantum dots by using numerical many-electron methods. These states have interesting similarities and differences with their counterstates found in the two-dimensional electron gas. The upsilon=1/2 states in quantum dots are shown to have high overlaps with the composite fermion states. The lower overlap of the Pfaffian state indicates that electrons might not be paired in quantum dot geometry. The predicted upsilon=5/2 state has a high spin polarization, which may have an impact on the spin transport through quantum dot devices.  相似文献   

15.
In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads.  相似文献   

16.
We theoretically investigate the single- and few-electron ground-states properties of HgTe topological insulator quantum dots with rectangular hard-wall confining potential using configuration interaction method. For the case of single electron, the edge states is robust against the deformation from a square quantum dot to a rectangular ones, in contrast to the bulk states, the energy gap of the QDs increased due to the coupling of the opposite edge states; for the case of few electrons, the electrons first fill the edge states in the bulk band gap and the addition energy exhibit universal even-odd oscillation due to the shape-independent two-fold degeneracy of the edge states. The size of this edge shell can be controlled by tuning the dot size, shape or the bulk band gap via lateral or vertical electric gating respectively of the HgTe quantum dot.  相似文献   

17.
The conductance across a quantum dot can be influenced by levels localized in the dot and having little hybridization with the conduction channel. Fano lineshapes arising in resonant transmission measurements, imply interference between the localized and extended states. By applying a magnetic orthogonal field, the total spin of a quantum dot can be tuned. Electron correlations drive the dot through level crossings to higher spin states. Such crossings can give rise to Kondo conductance when the dot is at Coulomb blockade close to a magnetic field induced level degeneracy. In a previous work [P. Stefański, A. Tagliacozzo, B.R. Bulka, Phys. Rev. Lett. 93 (2004) 186805] we have shown that a Fano-like pattern also appears when the continuum of the conduction states originates from a broad Kondo resonance. A bunch of localized core levels, weakly coupled to the Kondo resonance, imprints the broad Kondo peak with Fano lineshapes. A signature of the presence of correlations in the quantum dot is discussed.  相似文献   

18.
In this paper, a negatively charged exciton trapped by a spherical parabolic quantum dot has been investigated. The energy spectra of low-lying states are calculated by means of matrix diagonalization. The important feature of the low-lying states of the negatively charged excitons in a spherical quantum dot is obtained via an analysis of the energy spectra.  相似文献   

19.
We consider a quantum dot in the regime of the quantum Hall effect, particularly in Laughlin states and non-Abelian Read-Rezayi states. We find the location of the Coulomb blockade peaks in the conductance as a function of the area of the dot and the magnetic field. When the magnetic field is fixed and the area of the dot is varied, the peaks are equally spaced for the Laughlin states. In contrast, non-Abelian statistics is reflected in modulations of the spacing which depend on the magnetic field.  相似文献   

20.
We study the quasibound states in a graphene quantum-dot structure generated by the single-, double-, and triple-barrier electrostatic potentials. It is shown that the strongest quasibound states are mainly determined by the innermost barrier. Specifically, the positions of the quasibound states are determined by the barrier height, the number of the quasibound states is determined by the quantum-dot radius and the angular momentum, and the localization degree of the quasibound states is influenced by the width of the innermost barrier, as well as the outside barriers. Furthermore, according to the study on the double- and triple-barrier quantum dots, we find that an effective way to generate more quasibound states with even larger energy level spacings is to design a quantum dot defined by many concentric barriers with larger barrier-height differences. Last, we extend our results into the quantum dot of many barriers, which gives a complete picture about the formation of the quasibound states in the kind of graphene quantum dot created by many concentric potential barrier rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号