首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two-dimensional random Lorentz gases with absorbing traps are considered in which a moving point particle undergoes elastic collisions on hard disks and annihilates when reaching a trap. In systems of finite spatial extension, the asymptotic decay of the survival probability is exponential and characterized by an escape rate γ, which can be related to the average positive Lyapunov exponent and to the dimension of the fractal repeller of the system. For infinite systems, the survival probability obeys a stretched exponential law of the form P(c,t)∼exp(−Ct1/2). The transition between the two regimes is studied and we show that, for a given trap density, the non-integer dimension of the fractal repeller increases with the system size to finally reach the integer dimension of the phase space. Nevertheless, the repeller remains fractal. We determine the special scaling properties of this fractal.  相似文献   

2.
We investigate a Lévy walk alternating between velocities ±v 0 with opposite sign. The sojourn time probability distribution at large times is a power law lacking its mean or second moment. The first case corresponds to a ballistic regime where the ensemble averaged mean squared displacement (MSD) at large times is ?x 2? ∝ t 2, the latter to enhanced diffusion with ?x 2? ∝ t ν, 1 < ν < 2. The correlation function and the time averaged MSD are calculated. In the ballistic case, the deviations of the time averaged MSD from a purely ballistic behavior are shown to be distributed according to a Mittag-Leffler density function. In the enhanced diffusion regime, the fluctuations of the time averages MSD vanish at large times, yet very slowly. In both cases we quantify the discrepancy between the time averaged and ensemble averaged MSDs.  相似文献   

3.
By means of Monte Carlo simulations we studied the properties of diffusion limited recombination reactions (DLRR's) and random walks on two dimensional incipient percolation clusters with multifractal jump probabilities. We claim that, for these kind of geometric and energetic heterogeneous substrata, the long time behavior of the particle density in a DLRR is determined by a random walk exponent. It is also suggested that the exploration of a random walk is compact. It is considered a general case of intersection ind euclidean dimension of a random fractal of dimension DF and a multifractal distribution of probabilities of dimensionsD q (q real), where the two dimensional incipient percolation clusters with multifractal jump probabilities are particular examples. We argue that the object formed by this intersection is a multifractal of dimensionsD' q =D q +D F -d, for a finite interval ofq.  相似文献   

4.
Jane Rosa 《Physica A》2007,386(1):54-62
We consider a Brownian particle in a ratchet potential coupled to a modulated environment and subjected to an external oscillating force. The modulated environment is modelled by a finite number N of uncoupled harmonic oscillators. Superdiffusive motion and Levy walks (anomalous random walks) are observed for any N and for low values of the external amplitude F. The coexistence of left and right running states enhances the power α from the time dependence of the mean square displacement (MSD). It is shown that α is twice the average of the power of the separated left and right MSDs. Normal random walks are obtained by increasing F. We show that the maximal mobility of particles along the periodic structure occurs just before superdiffusive motion disappears and Levy walks are transformed into normal random walks.  相似文献   

5.
Sunil Kumar  Nivedita Deo 《Physica A》2009,388(8):1593-1602
We investigate the multifractal properties of the logarithmic returns of the Indian financial indices (BSE & NSE) by applying the multifractal detrended fluctuation analysis. The results are compared with that of the US S&P 500 index. Numerically we find that qth-order generalized Hurst exponents h(q) and τ(q) change with the moments q. The nonlinear dependence of these scaling exponents and the singularity spectrum f(α) show that the returns possess multifractality. By comparing the MF-DFA results of the original series to those for the shuffled series, we find that the multifractality is due to the contributions of long-range correlations as well as the broad probability density function. The financial markets studied here are compared with the Binomial Multifractal Model (BMFM) and have a smaller multifractal strength than the BMFM.  相似文献   

6.
We show that strong anomalous diffusion, i.e. where is a nonlinear function of q, is a generic phenomenon within a class of generalized continuous-time random walks. For such class of systems it is possible to compute analytically where n is an integer number. The presence of strong anomalous diffusion implies that the data collapse of the probability density function cannot hold, a part (sometimes) in the limit of very small , now . Moreover the comparison with previous numerical results shows that the shape of is not universal, i.e., one can have systems with the same but different F. Received 14 April 2000  相似文献   

7.
A calculation is presented of the long-time behavior of various random walk properties (moments, probability of return to the origin, expected number of distinct sites visited) formultistate random walks on periodic lattices. In particular, we consider inhomogeneous periodic lattices, consisting of a periodically repeated unit cell which contains a finite number of internal states (sites). The results are identical to those for perfect lattices except for a renormalization of coefficients. For walks without drift, it is found that all the asymptotic random walk properties are determined by the diffusion coefficients for the multistate random walk. The diffusion coefficients can be obtained by a simple matrix algorithm presented here. Both discrete and continuous time random walks are considered. The results are not restricted to nearest-neighbor random walks but apply as long as the single-step probability distributions associated with each of the internal states have finite means and variances.  相似文献   

8.
We derive an expression for the mean square displacement (MSD) of a particle whose motion is governed by a uniform, periodic, quantum multi-baker map. The expression is a function of both time, t, and Planck’s constant, h, and allows a study of both the long time, t→∞, and semi-classical, h→0, limits taken in either order. We evaluate the expression using random matrix theory as well as numerically, and observe good agreement between both sets of results. The long time limit shows that particle transport is generically ballistic for any fixed value of Planck’s constant. However, for fixed times, the semi-classical limit leads to diffusion. The mean square displacement for non-zero Planck’s constant, and finite time, exhibits a crossover from diffusive to ballistic motion, with crossover time on the order of the inverse of Planck’s constant. We argue that these results are generic for a large class of 1D quantum random walks, similar to the quantum multi-baker, and that a sufficient condition for diffusion in the semi-classical limit is classically chaotic dynamics in each cell. Some connections between our work and the other literature on quantum random walks are discussed. These walks are of some interest in the theory of quantum computation.  相似文献   

9.
An analytical representation of a random process with independent increments in some space (random walks introduced by Pearson) is considered. The law of random walk distribution in space is derived from the general representation of stochastic elementary hops (distribution law of hop probability) using Kadanoff’s concept of the unit increment as one hop. For limited hop laws and laws of hop distributions with all moments there naturally arises Chandrasekhar’s result that describes ordinary physical diffusion. For laws of hop distributions without the second and highest moments there also arise known Lévy walks (flights) sometimes treated as superdiffusion. For the intermediate case, where the distributions of hops have at least the second moment and not all finite moments (these hops are sometimes called truncated Lévy walks), the asymptotic form of the random walk distribution was obtained for the first time. The results obtained are compared with the experimental laws known in econophysics. Satisfactory agreement is observed between the developed theory and the empirical data for insufficiently studied truncated Lévy walks.  相似文献   

10.
The spans of ann-step random walk on a simple cubic lattice are the sides of the smallest rectangular box, with sides parallel to the coordinate axes, that contains the random walk. Daniels first developed the theory in outline and derived results for the simple random walk on a line. We show that the development of a more general asymptotic theory is facilitated by introducing the spectral representation of step probabilities. This allows us to consider the probability density for spans of random walks in which all moments of single steps may be infinite. The theory can also be extended to continuous-time random walks. We also show that the use of Abelian summation simplifies calculation of the moments. In particular we derive expressions for the span distributions of random walks (in one dimension) with single step transition probabilities of the formP(j) 1/j 1+, where 0<<2. We also derive results for continuous-time random walks in which the expected time between steps may be infinite.  相似文献   

11.
We study a scenario under which variable step random walks give anomalous statistics. We begin by analyzing the Martingale Central Limit Theorem to find a sufficient condition for the limit distribution to be non-Gaussian. We study the case when the scaling index∼ζ is∼12. For corresponding continuous time processes, it is shown that the probability density function W(x;t) satisfies the Fokker–Planck equation. Possible forms for the diffusion coefficient are given, and related to W(x,t). Finally, we show how a time-series can be used to distinguish between these variable diffusion processes and Lévy dynamics.  相似文献   

12.
Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres' diffusion coefficients are distributed and the initial spheres' density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is not exponential as in Brownian files, yet obeys: ψα(t)∼t−1−α, 0<α<1. The file is renewal as all the particles attempt jumping at the same time. It is shown that the mean square displacement (MSD) in a renewal-anomalous-heterogeneous file, 〈r2〉, obeys, , where nrmlr2〉 is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.  相似文献   

13.
The power law relation between higher order and second order scaled factorial moments is studied in one dimensional pseudo-rapidity phase (η) space in the interactions of 32S beam with CNO, AgBr and Emulsion at incident energy of 200 AGeV. Observation for such a power law may indicate a self similar cascade mechanism in multiparticle production process. The values of slope, βq are found to be independent of target size. The value of the scaling exponent υ = 1.412 obtained is higher than the critical value υ = 1.304, indicating that no second order phase transition exists in our data. The ratio of anomalous fractal dimensions, dq/d2 is found to increase with increase in the order of moments, q. The dependence of dq/d2 on q indicates a multifractal structure and the presence of self-similar cascading mechanism in our data. The dq/d2 values are well described by the Levy-stable distribution with Levy index μ = 1.562 which is consistent with and lies within the Levy stable region (0 ≤ μ ≤ 2). The multifractal spectrum is concave downward with a maximum at q = 0. The decrease in Dq with increasing q shows that there is a self affine multifractal behaviour in multiparticle production in our data.  相似文献   

14.
We consider a reversible jump process on ? d whose jump rates themselves are random. We show mean square convergence of this process under diffusion scaling to a limiting Brownian motion with a certain diffusion matrix, characterizing effective conductivity.  相似文献   

15.
Discrete-time random walks simulate diffusion if the single-step probability density function (jump distribution) generating the walk is sufficiently shortranged. In contrast, walks with long-ranged jump distributions considered in this paper simulate Lévy or stable processes. A one-dimensional walk with a selfsimilar jump distribution (the Weierstrass random walk) and its higherdimensional generalizations generate fractal trajectories if certain transience criteria are met and lead to simple analogs of deep results on the Hausdorff-Besicovitch dimension of stable processes. The Weierstrass random walk is lacunary (has gaps in the set of allowed steps) and its characteristic function is Weierstrass' non-differentiable function. Other lacunary random walks with characteristic functions related to Riemann's zeta function and certain numbertheoretic functions have very interesting analytic structure.  相似文献   

16.
By using a large amount of data collected in the atmospheric surface layer, we analyze the probability density functions (PDFs), the probability of return and the moments of wind velocity increments. Results show that the PDFs change from the non-Gaussian long-tailed distributions to Gaussian with the increase of time scales. This is similar to what has been observed and interpreted as an indication of cascade in the fully developed homogeneous and isotropic turbulence. Besides, both the probability of return and the moments are found to be scaling with time scales. We then compare above results with the truncated Lévy flights and the log-normal PDF model. It is found that although both models show the cascade-like behavior in the PDFs and the scaling behavior in the probability of return and the moments under some conditions, they are not good enough for quantitatively describing the random process of wind velocity increments.  相似文献   

17.
18.
19.
In this Letter, we derive a relationship between the moments of the first-passage time for a random walk and the first-passage time density for subdiffusive processes modeled by continuous-time random walks. In particular, we show that the exact long-time behavior of the density depends only on the mean first-passage time of the corresponding normal diffusive process. In addition, we give explicit evaluations of the first-passage time distribution for general three-dimensional bounded domains. These results are relevant to systems involving anomalous diffusion in confinements.  相似文献   

20.
In this paper,we study the scaling for the mean first-passage time(MFPT) of the random walks on a generalized Koch network with a trap.Through the network construction,where the initial state is transformed from a triangle to a polygon,we obtain the exact scaling for the MFPT.We show that the MFPT grows linearly with the number of nodes and the dimensions of the polygon in the large limit of the network order.In addition,we determine the exponents of scaling efficiency characterizing the random walks.Our results are the generalizations of those derived for the Koch network,which shed light on the analysis of random walks over various fractal networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号