首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the osmotic pressure of non-ionic and ionic surfactant solutions in the micellar and microemulsion regions, a potential of mean force including hard-core repulsion, van der Waals attraction and electric double layer repulsion is proposed to describe the interactions between micelles and between microemulsions. Both van der Waals attraction and electric double layer repulsion are represented using Yukawa tails. The explicit analytical expression of osmotic pressure derived from the first-order mean spherical approximation is implemented by accounting for the Donnan membrane effect. The proposed theory has been applied to micelle solutions of the non-ionic surfactant, n-dodecyl hexaoxyethylene monoether, the cationic surfactant, cetylpyridinium chloride, the anionic surfactant, sodium dodecyl sulfate, and spherical oil-in-water microemulsion system. Successful comparison is made between the proposed theory and the experimental osmotic pressure data for the studied surfactant solutions. Theoretical results show that the long-range electric double layer repulsion dramatically influences the osmotic pressure of both cationic and anionic surfactant solutions in the micellar region. The regressed model parameters such as effective micelle diameter, the mean aggregation number and effective micellar charge are in good agreement with those from static light scattering studies in the literature.  相似文献   

2.
Due to the interplay of Coulombic repulsion and attractive dipolar and van der Waals interactions, solutions of globular proteins display a rich variety of phase behavior featuring fluid-fluid and fluid-solid transitions that strongly depend on solution pH and salt concentration. Using a simple model for charge, dispersion and dipole-related contributions to the interprotein potential, we calculate phase diagrams for protein solutions within the framework of second-order perturbation theory. For each phase, we determine the Helmholtz energy as the sum of a hard-sphere reference term and a perturbation term that reflects both the electrostatic and dispersion interactions. Dipolar effects can induce fluid-fluid phase separation or crystallization even in the absence of any significant dispersion attraction. Because dissolved electrolytes screen the charge-charge repulsion more strongly than the dipolar attraction, the ionic strength dependence of the potential of mean force can feature a minimum at intermediate ionic strengths offering an explanation for the observed nonmonotonic dependence of the phase behavior on salt concentration. Inclusion of correlations between charge-dipole and dipole-dipole interactions is essential for a reliable calculation of phase diagrams for systems containing charged dipolar proteins and colloids.  相似文献   

3.
4.
The solvent around protein molecules in solutions is structured and this structuring introduces a repulsion in the intermolecular interaction potential at intermediate separations. We use Monte Carlo simulations with isotropic, pair-additive systems interacting with such potentials. We test if the liquid-liquid and liquid-solid phase lines in model protein solutions can be predicted from universal curves and a pair of experimentally determined parameters, as done for atomic and colloid materials using several laws of corresponding states. As predictors, we test three properties at the critical point for liquid-liquid separation: temperature, as in the original van der Waals law, the second virial coefficient, and a modified second virial coefficient, all paired with the critical volume fraction. We find that the van der Waals law is best obeyed and appears more general than its original formulation: A single universal curve describes all tested nonconformal isotropic pair-additive systems. Published experimental data for the liquid-liquid equilibrium for several proteins at various conditions follow a single van der Waals curve. For the solid-liquid equilibrium, we find that no single system property serves as its predictor. We go beyond corresponding-states correlations and put forth semiempirical laws, which allow prediction of the critical temperature and volume fraction solely based on the range of attraction of the intermolecular interaction potential.  相似文献   

5.
We propose a simple theory of interactions between like-charged polyelectrolyte and a surface based on a mean-field Derjaguin-Landau-Verwey-Overbeek approach. It predicts that the van der Waals attractive interactions are responsible for irreversible physisorption of polyelectrolytes onto charged surfaces. We show that monovalent salts contribute significantly to repulsive interactions, while enhancing the attraction very slightly. The effect of the divalent counterions is reverse. Therefore, to achieve the adsorption, the overall repulsion due to 1:1 electrolyte should be counterbalanced by the stronger van der Waals attraction due to the presence of doubly charged counterions in solution. The theory has been validated experimentally against its ability to predict the minimum polymer/surface interaction energy required for the adsorption using DNA/mica in NaCl, MgCl2, and NiCl2 solutions as a test system. The theory explains the mechanism of linear DNA adsorption to a mica surface for different solvent compositions and can be used as a tool for predicting the optimum conditions for AFM experiments on linear polymer systems. The model can also be used to make general conclusions on the conformation of polymer molecules on a surface. We have shown for the DNA/mica surface system that when the adsorption of DNA is mostly governed by long-range van der Waals forces the molecule adopts an ideal 2D conformation. When the adsorption is mostly due to short-range ion-correlation forces, DNA will appear 3D --> 2D projected in agreement with experimental data.  相似文献   

6.
Monte Carlo simulations within closed hyperspherical geometry are used to analyze the ionic distribution around two confined charged colloids to determine the origin of the net attraction recently reported in the literature. A scaling procedure is used to compare our numerical results obtained with small ideal colloids with the conclusion of the measurements performed with large silica colloids. Although no electrostatic attraction is detected under confinement, our simulations exhibit a significant reduction of the electrostatic repulsion between charged colloids confined between two weakly charged walls. After rescaling to reproduce the electrostatic repulsion between large confined colloids, our numerical results are qualitatively consistent with the reported attraction because we reasonably expect a reduction of the electrostatic force between such confined colloids below the order of magnitude of their van der Waals attraction.  相似文献   

7.
The deposition of eight bacterial strains on Teflon and glass in aqueous media with ionic strengths varying between 0.0001 and 1 M was measured and interpreted. Two types of interactions were considered: (1) those described by the DLVO theory, which comprise van der Waals attraction and electrostatic repulsion (bacteria and surfaces are both negatively charged); and (2) steric interactions between the outer cell surface macromolecules and the substrata. As a trend, at low ionic strength (<0.001 M), deposition is inhibited by DLVO-type electrostatic repulsion, but at high ionic strength (≥0.1 M) it is dominated by steric interactions. The ionic strength at which the transition from the DLVO-controlled to the sterically controlled deposition occurs, is determined by the extension of the macromolecules into the surrounding medium, which varied between 5 and 100 nm among the bacterial strains studied. The steric interactions either promote deposition by bridging or inhibit it by steric repulsion. Between Teflon and hydrophobic bacteria, bridging is generally observed. The surface of one bacterial strain contains amphiphilic macromolecules that form bridges with Teflon but induce steric repulsion on glass. The presence of highly polar anionic polysaccharide coatings on the cell impedes attachment on both glass and Teflon. For practice, the general conclusion is that the deposition of most bacteria is: (1) strongly inhibited by DLVO-type electrostatic repulsion in aqueous environments of low ionic strength such as rain water, streams and lakes; (2) controlled by DLVO and/or steric interactions in systems as domestic waste waters and saliva; and (3) determined by steric interactions only in more saline environments as milk, urine, blood and sea water.  相似文献   

8.
 The stabilization and flocculation behavior of colloidal silica-particles with cationic polyelectrolytes (PE) is investigated. The zetapotentials, diffusion coefficients and flocculation rate constants of silica particles have been measured as a function of the adsorbed amount of cationic polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions at different salt concentrations and pH-values. Very fast flocculation due to van der Waals attraction occurs if the zetapotential is small. At low ionic strength this condition occurs just below the plateau of the adsorption isotherms where the surface charges are screened by adsorbed polycations. Additionally with high molecular polycations slow mosaic flocculation is observed at lower PE concentrations. At high ionic strength fast flocculation takes place at low macroion concentration due to the screening of the surface charges by adsorbed polycations and salt ions. At medium concentrations of polycations below plateau adorption slow bridging flocculation is observed. At plateau adsorption the suspensions become stabilized up to high ionic strength. At low salt concentration charge reversal at full coverage with polycations results in electrostatic repulsion. At high ionic strength the particles are stabilized sterically due to the osmotic repulsion of the long adsorbed PE tails. Therefore macroions of high molar mass are necessary to stabilize the suspension at high ionic strength. Received: 27 January 1998 Accepted: 23 March 1988  相似文献   

9.
A substantial amount of experimental and numerical evidence has shown that the Derjaguin-Landau-Verwey-Overbeek theory is not suitable for describing those colloidal solutions that contain multivalent counterions. Toward improved understanding of such solutions, the authors report Monte Carlo calculations wherein, following Rouzina and Bloomfield, they postulate that, in the absence of van der Waals forces, the overall force between two isolated charged colloidal particles in electrolyte solutions is determined by a dimensionless parameter Gamma=z(2)l(B)/a, which measures the electrostatic repulsion between counterions adsorbed on the macroion surface, where z = counterion valence, l(B)=Bjerrum length, and a = average separation between counterions on the macroion surface calculated as if the macroion were fully neutralized. The authors find, first, that the maximum repulsion between like-charged macroions occurs at Gamma approximately 0.5 and, second, that onset of attraction occurs at Gamma approximately 1.8, essentially independent of the valence and concentration of the surrounding electrolyte. These observations might provide new understanding of interactions between electrostatic double layers and perhaps offer explanations for some electrostatic phenomena related to interactions between DNA molecules or proteins.  相似文献   

10.
A combined theoretical and experimental study of the adhesion of alumina particles and polystyrene latex spheres to silicon dioxide surfaces was performed. A boundary element technique was used to model electrostatic interactions between micron-scale particles and planar surfaces when the particles and surfaces were in contact. This method allows quantitative evaluation of the effects of particle geometry and surface roughness on the electrostatic interaction. The electrostatic interactions are combined with a previously developed model for van der Waals forces in particle adhesion. The combined model accounts for the effects of particle and substrate geometry, surface roughness and asperity deformation on the adhesion force. Predictions from the combined model are compared with experimental measurements made with an atomic force microscope. Measurements are made in aqueous solutions of varying ionic strength and solution pH. While van der Waals forces are generally dominant when particles are in contact with surfaces, results obtained here indicate that electrostatic interactions contribute to the overall adhesion force in certain cases. Specifically, alumina particles with complex geometries were found to adhere to surfaces due to both electrostatic and van der Waals interactions, while polystyrene latex spheres were not affected by electrostatic forces when in contact with various surfaces.  相似文献   

11.
The conformation of bovine serum albumin (BSA), as well as its interactions with negatively charged mica surfaces in saline solutions of different pH values, have been studied by small-angle neutron scattering (SANS) and chemical force microscopy (CFM), respectively. A new approach to extract the contribution of elementary interactions from the statistically averaged force-extension curves through self-consistent fitting was proposed and used to understand the effects of pH on the interactions and conformation of BSA in saline solutions. When pH increases, the SANS results reveal that the sizes of BSA molecules increase slightly, while the statistical analysis of the CFM results shows that the averaged pull-off force for the elongation monotonously decreases. The decrease of pull-off force with the increase of pH results from the decrease in the strength of hydrogen bonding and the number of interaction pairs, as well as the slight increase of the strength of van der Waals interaction. When pH approaches the isoelectric point (pI) of BSA, results from both SANS and CFM suggest a loss of long-range interactions in BSA molecules. Our results also suggest that the force-extension curve is mainly contributed by the van der Waals interaction. The combination of SANS and CFM provides new insight to understand the interactions and conformation of BSA molecules.  相似文献   

12.
The effect of ionic strength and pH on phosphatidylcholine (PC) adsorption from vesicles on silica nanoparticles was investigated over a range of NaCl concentrations (0.1-150 mM) at pH 6.3 and 7.4 from determination of adsorption isotherms, colloid stability, particle sizing, and zeta-potentials. At and above 10 mM ionic strength, pH 6.3, high-affinity adsorption isotherms with limiting adsorption indicative of one-bilayer deposition on each silica particle were obtained. At 10 mM ionic strength, adsorption isotherms indicated lower affinity between PC and silica at pH 7.4 than at pH 6.3, suggesting a role of hydrogen bonding between silanol on silica and phosphate on PC in promoting bilayer deposition at low pH. Under conditions where high affinity and bilayer deposition were achieved, silica sedimentation documented from photographs was absent, suggesting particle stabilization induced by bilayer coverage. However, at physiological (150 mM NaCl) or close to physiological ionic strength (140 mM NaCl), the large colloid stability similarly achieved at pH 6.3 or 7.4 suggested the major role of van der Waals attraction between the PC bilayer vesicle and silica particle in determining bilayer deposition. The effect of increasing ionic strength was increasing van der Waals attraction, which caused PC vesicle disruption with bilayer deposition and bilayer-induced silica stabilization.  相似文献   

13.
The stabilization and flocculation behaviour of colloidal latex particles covered with cationic polyelectrolytes (PE) is studied with photon correlation spectroscopy and zetapotential measurements. Diffusion coefficients, flocculation rate constants and zetapotentials have been determined as a function of adsorbed amount of cationic poly-(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions in water and at high ionic strength. Flocculation by van der Waals attraction can be observed if the zetapotential is low. This occurs, if the surface charge is screened by the oppositely charged cations. Furthermore, in the case of adsorption of high molecular polycations mosaic flocculation occurs if the adsorbed amount is low. At high ionic strength, flocculation takes place if the adsorbed amount is below the adsorption plateau. If the adsorption plateau is reached the suspensions become stabilized. In water the charge reversal at full coverage leads to electrosteric stabilization both with low and high molar mass polycations. At high ionic strength only polycations with high molar mass are able to stabilize the suspension. If a certain molar mass of the polycation is exceeded, steric stabilization of the suspension occurs due to the formation of long adsorbed PE tails and their osmotic repulsion. The layer thicknesses are determined as a function of the molar mass. Received: 4 July 2000/Accepted: 18 August 2000  相似文献   

14.
A study was conducted on the effects of carbon surface chemistry, solution pH, and ionic strength on the removal of diuron and amitrole from aqueous solutions by adsorption on an as-received and oxidized activated carbon fiber. Results obtained were explained by the surface characteristics of the adsorbents and the characteristics of the herbicide molecules. Under the experimental conditions used, diuron uptake was much higher than that of amitrole, despite its larger molecular dimensions, due to the lesser water solubility, greater hydrophobicity, and larger dipolar moment of diuron compared with amitrole. Uptake variations associated with differences in carbon surface oxidation, solution pH, and ionic strength were explained by corresponding changes in electrostatic, hydrophobic, and van der Waals interactions.  相似文献   

15.
Molecular-dynamics simulations of a single C(60) fullerene and pairs of C(60) fullerenes in aqueous solution have been performed for the purpose of obtaining improved understanding of the nature of solvent-induced interactions between C(60) fullerenes in water. Our simulations reveal repulsive solvent-induced interactions between two C(60) fullerenes in aqueous solution in contrast to the associative effects observed for conventional nonpolar solutes. A decomposition of the solvent-induced potential of mean force between fullerenes into entropy and energy (enthalpy) contributions reveals that the water-induced repulsion between fullerenes is energetic in origin, contrasting strongly to entropy-driven association observed for conventional nonpolar solutes. The dominance of energy in the solvent-induced interactions between C(60) fullerenes arises primarily from the high atomic density of the C(60) molecule, resulting in strong C(60)-water van der Waals attraction that is reduced upon association of the fullerenes. The water-induced repulsion is found to decrease with increasing temperature due largely to an increasing contribution from a relatively weak entropy-driven association.  相似文献   

16.
A practical limitation of the application of Smoluchowski's classical estimate for the collisions probability of two diffusing spherical particles in Brownian motion is the non-consideration of interparticle forcves. For suspended particles in water such forces can arise from the disturbance the particle causes in the fluid (hydrodynamic forces), from the cloud of ions which surround an electrically charged particle (double layer forces) or they can be of molecular origin (van der Waals forces). In this paper corrections to Smoluckhowski's collision probability are computed when such forces operate Scoluchowski's collision probability are computed when such forces operate between two approaching particles of various sizes. Results for several values of the van der Waals energy of attraction and the ionic strength of the electrolyte are presented in a way convenient for particle collision modeling.  相似文献   

17.
We present a density-functional theory study of nanoparticle interactions in a concentrated polymer solution. The polymers are modeled as freely jointed tangent chains; all nonbonded interactions between polymer segments and nanoparticles are described by Lennard-Jones potentials. We test several recently proposed methods of treating attractive interactions within the density-functional theory framework by comparing theoretical results with recent simulation data. We find that the simple van der Waals approach provides the most accurate results for the polymer-mediated potential of mean force between two dilute nanoparticles. We employ this approach to study nanoparticle interactions as a function of nanoparticle-segment interaction strength and polymer solution density and temperature.  相似文献   

18.
The coagulation and colloidal stability of tobacco mosaic virus (TMV) in alcohol-water-LiCl solutions were studied. Without the addition of LiCl salt, the coagulation was promoted by the increase of hydrophobicity of the alcohols that is proportional to their alkyl chain length and concentration. Addition of the LiCl salt reduced the electrostatic repulsion between TMV particles resulting in coagulation in methanol-water and ethanol-water solutions. In water-alcohol-LiCl mixture, the coagulation of TMV was driven by both the hydrophobic interaction of the solution and the screening effect of the salt simultaneously. To understand the particle-particle interaction during the coagulation, the interaction energy was calculated using DLVO theory. Considering the electrostatic repulsive energy, van der Waals attractive energy, and hydrophobic interaction energy, the total energy profiles were obtained. The experiment and model calculation results indicated that the increase of alcohol concentration would increase hydrophobic attraction energy so that the coagulation is promoted. These results provide the fundamental understanding on the coagulation of biomolecular macromolecules.  相似文献   

19.
Monte Carlo simulations have been performed for ion distributions outside a single globular macroion and for a pair of macroions, in different salt solutions. The model that we use includes both electrostatic and van der Waals interactions between ions and between ions and macroions. Simulation results are compared with the predictions of the Ornstein-Zernike equation with the hypernetted chain closure approximation and the nonlinear Poisson-Boltzmann equation, both augmented by pertinent van der Waals terms. Ion distributions from analytical approximations are generally very close to the simulation results. This demonstrates that properties that are related to ion distributions in the double layer outside a single interface can to a good approximation be obtained from the Poisson-Boltzmann equation. We also present simulation and integral equation results for the mean force between two globular macroions (with properties corresponding to those of hen-egg-white lysozyme protein at pH 4.3) in different salt solutions. The mean force and potential of mean force between the macroions become more attractive upon increasing the polarizability of the counterions (anions), in qualitative agreement with experiments. We finally show that the deduced second virial coefficients agree quite well with experimental results.  相似文献   

20.
The interaction force between a very hydrophobic polymer surface and colloidal silica particles with a roughness of 10–15 nm has been measured in aqueous solutions of KOH and KCl using an atomic force microscope. The interaction can be described according to the DLVO theory by an electrical double-layer force that is repulsive at long distances and attractive at short distances and an attractive van der Waals force. The electrical double-layer potentials are compared to the zeta potentials of Teflon AF and the silica spheres. The roughness of the silica particles leads to an underestimation of the short-range attraction and the surface potential. Both KCl and KOH solutions affect the potential of the interacting surfaces. OH ions that adsorb preferentially to the Teflon AF surface create higher potentials than Cl ions. Range and strength of the attractive interaction are not affected by KCl solutions but reduced by addition of KOH. This can be explained by decreasing potential differences between the silica sphere and Teflon AF with increasing KOH concentration. In addition, the preferential adsorption of OH ions may lead to a reduction of the van der Waals interaction. The presence of nanobubbles, too, might play a role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号