首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coin-like hollow carbon (CHC) has been synthesized by only using ethanol as the carbon source with a novel Mg/NiCl2 catalytic system via a facile solvothermal method for the first time. The CHC synthesized at optimized conditions shows an average thickness of less than 154 nm and the coin diameter of 1–3 μm. The CHC is characterized by SEM, TEM, XRD and electrochemical techniques. Pd on CHC (denotes as Pd/CHC) electrocatalysts are prepared for methanol oxidation in alkaline media. The Pd/CHC electrocatalyst gives a mass activity of 2930 A g−1 Pd for methanol oxidation against 870 A g−1 Pd on Pd/C electrocatalyst. One main reason for the higher mass activity of the Pd/CHC is the higher electrochemical active surface area (EASA) of the Pd/CHC.  相似文献   

2.
A green and efficient route has been employed to synthesize a worm-like mesoporous carbon with high specific surface area (2587 m2 g?1) and large pore volume (3.14 cm3 g?1). Three electrochemical methods have been used to measure its electrochemical performance. Worm-like mesoporous carbon performs the high specific capacitance (344 F g?1) at constant-current densities of 50 mA g?1.  相似文献   

3.
The magnetic barium ferrite (BaFe12O19) hollow fibers with a high specific surface area about 22–38 m2 g?1, diameters around 1 μm and a ratio of the hollow diameter to the fiber diameter estimated about 1/2–2/3 have been prepared by the gel-precursor transformation process. The precursor and resulting ferrite hollow fibers were analyzed by thermo-gravimetric and differential scanning calorimetry, infrared spectroscopy, scanning electron microscopy and X-ray diffraction. The specific surface area was measured by the Brunauer–Emmett–Teller method. The gel formed at pH 5.5 has a good spinnability. A pure barium ferrite phase is formed after calcined at 750 °C for 2 h and fabricated of nanograins about 38 nm with a hexagonal plate-like morphology, which are increased to about 72 nm with the calcination temperature increased up to 1050 °C. The barium ferrite hollow fibers obtained at 750 °C for 2 h have a specific surface area 38.1 m2 g?1 and average pore size 6.5 nm and then the specific surface area and average pore size show a reduction tendency with the calcination temperature increasing from 750 to 1050 °C owing to the particle growth and fiber densification. These barium ferrite hollow fibers exhibit typical hard-magnetic materials characteristics and the formation mechanism for hollow structures is discussed.  相似文献   

4.
《Chemical physics》2005,309(1):33-39
The interaction of propyne with the Pt(1 1 1) and Pd(1 1 1) surfaces has been studied by means of the generalised gradient approach of density functional theory using periodic slab models. For both surfaces, the most stable adsorption mode of propyne is di-σ/π mode where the hydrocarbon is σ-bonded to two metal atoms with some additional π bonding to a third adjacent surface atom. The adsorption geometry is a highly distorted propyne with the C1 and C2 in a nearly sp2 hybridisation. Two equivalent surface structures have been found on Pt and Pd. These correspond to the adsorption on the fcc or hcp hollow sites. The adsorption energies on Pt(1 1 1) and Pd(1 1 1) are predicted to be ∼−197 and −161 kJ mol−1, respectively. The electronic factors that control the chemisorption have been analysed by means of the projected density of states.  相似文献   

5.
A new technique to prepare a palladium membrane for high-temperature hydrogen permeation was developed: Pd(C3H3)(C5H5) an organometallic precursor reacted with hydrogen at room temperature to decompose into Pd crystallites. This reaction together with sintering treatment under hydrogen and nitrogen in sequence resulted in the formation of dense films of pure palladium on the surface of the mesoporous stainless steel (SUS) support. Under H2 atmosphere the palladium membrane could be sintered at 823 K to form a skin layer inside the support pores. The hydrogen permeance was 5.16×10−2 cm3 cm−2 cm Hg−1 s−1 at 723 K. H2/N2 selectivity was 1600 at 723 K.  相似文献   

6.
The electrochemical oxidation of β-nicotinamide adenine dinucleotide (NADH) is studied at a glassy carbon electrode (GCE) modified with bicontinuous gyroidal mesoporous carbon (BGMC). Due to the large surface area and remarkable electrocatalytic properties of BGMC, the BGMC/GCE exhibits potent electrocatalytic activity toward the electro-oxidation of NADH. A substantial decrease of 649 mV in the overpotential of NADH oxidation reaction is achieved compared with a bare GCE. The anodic peak currents increase steadily with the concentration of NADH in a broad range from 3.0 × 10?6 to 1.4 × 10?3 M with a low detection limit of 1.0 × 10?6 M under the optimal condition.  相似文献   

7.
A kind of mesoporous carbon spheres (MCS) containing in-frame incorporated nitrogen has been prepared by a facile polymerization-induced colloid aggregation method. As the electrode material for electric double layer capacitor (EDLC) in 5 mol/L H2SO4, the MCS products present excellent specific capacitance as 211 F/g much larger than that of the most popularly applied activated carbon at a high discharge current density of 1 A/g. Its specific capacitance can still remain 200 F/g at 20 A/g. The superior electrochemical performance of MCS is associated with the following characteristics: high specific surface area (∼1330 m2/g) contributed mainly by the mesopores, uniform pore size as large as 29 nm and moderate content of nitrogen (10 wt%), which are the requirements for ideal supercapacitors.  相似文献   

8.
A large volume of Pd nanowire networks with lengths of a few tens of nanometers are synthesized successfully by the inherent self-assembly process with the stabilizing effect of sodium citrate. The Pd nanowire networks exhibit a superior electrocatalytic activity for formic acid oxidation. The specific area activities of Pd nanowire at 0.1 V calculated from the forward-scan currents were 1.38 mA cm?2, which is 97% higher than that obtained from Pd nanoparticle or peanut-like structures (0.70 mA cm?2). The mechanism of the significant enhancement of the catalytic activity of Pd nanowire network can be due to the unique surface characteristics and effective electronic conduction path within the Pd nanowire networks.  相似文献   

9.
In this work, palladium (Pd) nanoparticles/three-dimensional hollow N-doped graphene frameworks (HNGF) hybrid catalysts were fabricated by using amine-functionalized poly (glycidyl methacrylate) microspheres-templated HNGF as supporting materials for Pd nanoparticles (NPs). The results demonstrate that the Pd NPs with average sizes of ~ 5.5 nm can be well dispersed on the surfaces of HNGF with internal circular holes of ~ 400 nm. The Pd/HNGF catalysts exhibit high electrocatalytic activity and durability toward methanol electro-oxidation in alkaline medium, compared to Pd/graphene and Pd/carbon.  相似文献   

10.
A method for preconcentration of palladium at trace level on modified multiwalled carbon nanotubes columns and determination by flame atomic absorption spectrometry (FAAS) has been developed. Multiwalled carbon nanotubes (MWCNTs) were oxidized with concentrated HNO3 and the oxidized multiwalled carbon nanotubes were modified with 5-(4′-dimethylamino benzyliden)-rhodanine, and then were used as a solid sorbent for preconcentration of Pd(II) ions. Factors influencing sorption and desorption of Pd(II) ions were investigated. The sorption of Pd(II) ions was quantitative in the pH range of 1.0–4.5, whereas quantitative desorption occurs with 3.0 mL 0.4 mol L?1 thiourea. The amount of eluted palladium was measured using flame atomic absorption spectrometry. The effects of experimental parameters, including sample flow rate, eluent flow rate, and eluent concentration were investigated. The effect of coexisting ions showed no interference from most ions tested. The proposed method permitted a large enrichment factor (about 200). The relative standard deviation of the method was ±2.73% (for eight replicate determination of 2.0 μg mL?1 of Pd(II)) and the limit of detection was 0.3 ng mL?1. The method was applied to the determination of Pd(II) in water, road dust, and standard samples.  相似文献   

11.
Anatase phase mesoporous TiO2 with I41/amd space group was synthesized via the urea assisted hydrothermal method. The existence of mono phasic TiO2 sub-microspheres of uniform particle size (ca. 400 nm) encompassing an average crystallite size of 14 nm was demonstrated using the XRD, FE-SEM and TEM analysis. Surface area of ca. 116.49 m2/g along with a pore size of 7 nm was calculated using the BET and adsorption isotherm measurements which authenticated the mesoporous nature of the synthesized material. Suitable calcination temperature for the better electrochemical property was established via the optimization process. Accordingly, the mesoporous TiO2 calcined at 400 °C displayed improved cycleability with excellent rate capability ever reported, even at 20 C-rate of discharge. The reason for the superior rate capability is corroborated to the highly mesoporous nature of the TiO2 sub-microspheres that has imparted desirable surface area apposite for enhanced ionic and electronic diffusion.  相似文献   

12.
A flow injection on-line displacement solid-phase extraction protocol was employed to minimize mass interferences with determination of palladium by inductively coupled plasma mass spectrometry (ICP-MS). The developed method involved in on-line complexing of Ag+ with pyrrolidine dithiocarbamate (PDC), presorption of the resultant Ag–PDC onto a microcolumn packed with the cigarette filter, displacement sorption of Pd2+ through loading the sample solution onto the microcolumn due to on-line displacement reaction between Pd2+ and the presorbed Ag–PDC, elution of the retained Pd2+ with 50 μL of ethanol for on-line ICP-MS detection. Interferences from co-existing heavy metal ions with lower stability of their PDC complexes relative to Ag–PDC were minimized/eliminated. No interferences from 5 mg L 1 Zn and 3 mg L 1 Pb for 104Pd, 0.4 mg L 1 Cu for 105Pd, 6 mg L 1 Zn and 2 mg L 1 Cd for 106Pd, 6 mg L 1 Zn and 3 mg L 1 Cd for 108Pd, and 2 mg L 1 Cd for 110Pd were observed for the determination of 100 ng L 1 Pd. The enhancement factors of 71–75, sample throughput of 23 samples h 1 and detection limits of 2.8–3.5 ng L 1 were achieved with the consumption of 3.0 mL of sample solution. The precision (RSD) for eleven replicate determinations of Pd at the 100 ng L 1 level was 1.8–2.7%. The developed method was applied to the determination of palladium in rock samples.  相似文献   

13.
Activated carbon fibers (ACFs) with high surface area and highly mesoporous structure for electrochemical double layer capacitors (EDLCs) have been prepared from polyacrylonitrile fibers by NaOH activation. Their unique microstructural features enable the ACFs to present outstanding high specific capacitance in aqueous, non-aqueous and novel ionic liquid electrolytes, i.e. 371 F g−1 in 6 mol L−1 KOH, 213 F g−1 in 1 mol L−1 LiClO4/PC and 188 F g−1 in ionic liquid composed of lithium bis(trifluoromethane sulfonyl)imide (LiN(SO2CF3)2, LiTFSI) and 2-oxazolidinone (C3H5NO2, OZO), suggesting that the ACF is a promising electrode material for high performance EDLCs.  相似文献   

14.
A direct borohydride fuel cell with a Pd/Ir catalysed microfibrous carbon cathode and a gold-catalysed microporous carbon cloth anode is reported. The fuel and oxidant were NaBH4 and H2O2, at concentrations within the range of 0.1–2.0 mol dm−3 and 0.05–0.45 mol dm−3, respectively. Different combinations of these reactants were examined at 10, 25 and 42 °C. At constant current density between 0 and 113 mA cm−2, the Pd/Ir coated microfibrous carbon electrode proved more active for the reduction of peroxide ion than a platinised-carbon one. The maximum power density achieved was 78 mW cm−2 at a current density of 71 mA cm−2 and a cell voltage of 1.09 V.  相似文献   

15.
Tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1 (FoDH1) catalyzes formate oxidation with NAD+. FoDH1 shows little direct communication with carbon electrodes, including mesoporous Ketjen Black-modified glassy carbon electrode (KB/GCE); however, it shows well-defined direct electron transfer (DET)-type bioelectrocatalysis of carbon dioxide reduction, formate oxidation, NAD+ reduction, and NADH oxidation on gold nanoparticle (AuNP)-embedded KB/GCE treated with 4-mercaptopyridine. Microscopic measurements reveal that the AuNPs (d = 5 nm) embedded on the KB surface are uniformly dispersed. Electrochemical data indicate that the pyridine moiety on the AuNPs plays important roles in facilitating the interfacial electron transfer kinetics and increasing the probability of productive orientation of FoDH1. The formal potential of the electrochemical communication site, which is most probably an ion‑sulfur cluster, is evaluated as − 0.591 ± 0.005 V vs. Ag | AgCl | sat. KCl from Nernst analysis of the steady-state catalytic waves.  相似文献   

16.
The stability and degradation mechanism of graphitized (Graphene nanosheets) and more amorphous (Vulcan XC-72R) carbon-supported palladium nanoparticles was investigated. Coupling identical-location transmission electron microscopy (ILTEM) and electrochemistry enabled to correlate the distribution of the Pd nanoparticles under accelerated stress test (up to 1000 cycles between 0.1 and 1.23 V vs. RHE, in a 0.1 M NaOH solution at 25 °C) with changes in electrochemical accessible surface area (ECSA). The carbon-supported Pd nanoparticles undergo similar rates of degradation in terms of electrochemical surface areas on both supports. However, their mechanisms of degradation differ: on amorphous carbon, the primary mode of degradation is Pd nanoparticles detachment (and minor agglomeration), whereas on graphitized supports it is more likely their coalescence and dissolution/redeposition. “Bulk” carbon-corrosion is negligible in both cases, as proven by ex situ Raman spectroscopy. So, using a graphitized carbon support (Graphene nanosheets) versus a more amorphous one (Vulcan XC-72R) does not enable to significantly depreciate the Pd/C catalyst degradation in alkaline media.  相似文献   

17.
Nanostructured PtRu material has been successively synthesized via chemical co-reduction of hexachloroplatinic acid and ruthenium trichloride using three-dimensional (3D) hexagonal mesoporous SBA-12 silica as a solid template, and has been studied as an electrocatalyst toward methanol electro-oxidation. The ordered nanostructure of the PtRu particles has been disclosed by transmission electron micrographs and is characterized by regular pores of ca. 3.0 ± 0.3 nm in diameter separated by walls of ca. 3.0 ± 0.3 nm thick. X-ray diffraction and energy dispersive X-ray spectroscope studies indicate that the PtRu material comprises of complicated phases rather than a single alloy phase of Pt and Ru. The specific electrochemical surface area of the nanostructured powder measured using both CO and underpotential deposited Cu stripping techniques is 74–78 m2 g–1, higher than that of unsupported precious metal catalysts prepared using standard techniques. The combination of high surface area and periodic nanostructure of the templated PtRu makes it an interesting promising fuel cell electrocatalyst. This has been demonstrated by the high activity of the templated PtRu towards the methanol electrooxidation. Therefore the solid template route based on 3D mesoporous silica with controlled pore size and high pore interconnectivity provides an interesting alternative to produce promising high-surface-area electrode materials.  相似文献   

18.
Introducing palladium to traditional platinum-based alloy electrocatalysts offers a novel approach to develop highly efficient anode electrocatalysts for direct methanol fuel cells. In this communication, we report the preparation of thin-wall mesoporous quaternary PtPdRuOs alloy catalyst via electrochemical co-reduction of their chloride precursors all dissolved in aqueous domains of the liquid crystalline phases of an oligoethylene oxide surfactant. Scanning electron micrographs (SEM) reveal that the deposit is composed of uniform nanospheres with an average diameter of around 120 nm and the average mole composition of the metal elements is Pt37Pd33Ru22Os10. Transmission electron micrographs (TEM) disclose that the nanospheres have an ordered nanostructure which is characterized by periodic pores of 3.6 ± 0.4 nm in diameter separated by walls of 2.4 ± 0.4 nm in thickness. X-ray diffraction studies signal a highly alloying degree for the four metal components in the deposit. The specific electrochemical surface area of the nanostructured powder assessed using underpotential deposited Cu stripping technique is as high as 105 m2 g–1, much higher than that of unsupported precious metal catalysts prepared using standard techniques. These characters suggest that the quaternary PtPdRuOs alloy materials with high surface area and thin-wall mesoporous structure would be a novel class of promising electrocatalysts for direct methanol fuel cells.  相似文献   

19.
Si/C composites of carbon hollow structures loaded with Si nanoparticles (NPs) (Si/C-HSs) were prepared by one-step pyrolysis of a mixture of Si NPs and expandable microspheres (EMs). For the Si/C-HSs, hollow carbon shells with rough surfaces were formed by directly carbonizing the polymer shells of EMs, and the Si NPs fell into the void space or were loaded on the rough surfaces of the carbon shells. The EM-based carbon shells accommodated the volume expansion of the Si NPs and improved the electrical conductivity of the composites. As a result, the Si/C-HSs exhibited a high capacity (initial reversible capacity: 854.4 mAh g 1 at 300 mA g 1), stable cycling performance (capacity retention: 80% after 50 cycles), and excellent rate capability.  相似文献   

20.
Activated carbon derived from rod-shaped polyaniline (the diameter of 170 nm) was synthesized by carbonization and subsequent activation with KOH. The obtained activated carbon exhibits a high specific capacitance (455 F g?1) and remarkable rate capability due to its high specific surface area (1976 m2 g?1), narrow pore size distribution (< 3 nm) as well as short diffusion length. It is indicated that the promising synthetic method used in this work can pave the way for designing new carbon based materials from different polymers for high-performance energy applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号