首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A headspace adsorptive microextraction technique was developed using a novel polyaniline-nylon-6 (PANI-N6) nanofiber sheet, fabricated by electrospinning. The homogeneity and the porosity of the prepared PANI-N6 sheet were studied using the scanning electron microscopy (SEM) and nanofibers diameters were found to be around 200 nm. The novel nanofiber sheet was examined as an extracting medium to isolate some selected chlorobenzenes (CBs), as model compounds, from aquatic media. The extracted analytes were desorbed using μL-amounts of solvent and eventually an aliquot of extractant was injected into gas chromatography–mass spectrometry (GC–MS). Various parameters affecting the extraction and desorption processes were optimized. The developed method proved to be convenient and offers sufficient sensitivity and a good reproducibility. Limits of detection achieved for CBs with the developed analytical procedure ranged from 19 to 33 ng L?1, while limits of quantification were from 50 to 60 ng L?1. The relative standard deviations (RSD) at a concentration level of 0.1 ng mL?1 and 1 ng mL?1 were in the range of 8–14% and 5–11% (n = 3), respectively. The calibration curves of analytes were investigated in the range of 50–1000 ng L?1 and R2 between 0.9739 and 0.9932 were obtained. The developed method was successfully applied to the extraction of selected CBs from tap and river water samples. The relative recovery (RR) percentage obtained for the spiked real water samples at 0.1 ng mL?1 and 1 ng mL?1 level were 93–103% and 95–104%, respectively. The whole procedure showed to be conveniently applicable and quite easy to handle.  相似文献   

2.
The present study describes a simple stability-indicating reversed-phase HPLC assay for antiplatelet drug, clopidogrel bisulfate. Separation of the drug and the degradation products, under stress conditions was successfully achieved on a C-18 column utilizing 0.01 M Na2HPO4 (pH 4): acetonitrile in the ratio 80:20 v/v, pumped at a flow rate of 0.5 ml min?1 with UV detection at 235 nm. The retention time of clopidogrel was 6.84 min. The method was satisfactorily validated with respect to linearity, precision, accuracy, selectivity, sensitivity and ruggedness. The response was linear in the range of 0.2–3.5 μg ml?1 with detection limit 0.079 μg ml?1. The suggested method was successfully applied for the analysis of clopidogrel in bulk and in commercial tablets. The results were favorably compared to those obtained by a reference method. The proposed method was successfully applied to the content uniformity testing of tablets and for determination of clopidogrel in presence of its co-administered drug, acetyl salicylic acid.  相似文献   

3.
In this study, dispersive liquid–liquid microextraction (DLLME) combined with ultra-high-pressure liquid chromatography (UHPLC)–tunable ultraviolet detection (TUV), has been developed for pre-concentration and determination of triclosan (TCS), triclocarban (TCC) and methyl-triclosan (M-TCS) in aqueous samples. The key factors, including the kind and volume of extraction solvent and dispersive solvent, extraction time, salt effect and pH, which probably affect the extraction efficiencies were examined and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.0500–100 μg L?1 for TCS, 0.0250–50.0 μg L?1 for TCC, and 0.500–100 μg L?1 for M-TCS, respectively, with correlation coefficients (r2) > 0.9945. The limits of detection (LODs) ranged from 45.1 to 236 ng L?1. TCS in domestic waters was detected with the concentration of 2.08 μg L?1. The spiked recoveries of three target compounds in river water, irrigating water, reclaimed water and domestic water samples were achieved in the range of 96.4–121%, 64.3–84.9%, 77.2–115% and 75.5–106%, respectively. As a result, this method can be successfully applied for the rapid and convenient determination of TCS, TCC and M-TCS in real water samples.  相似文献   

4.
A study of high-power two-jet plasma capabilities for the direct multi-elemental analysis of animal organs was undertaken. The experimental conditions chosen allow the direct analysis of different animal organs after drying and grinding to powder (particle size 20–200 μm). It was found that evaporation efficiency of the samples depends on the particle size and thermal stability of tissues and can be improved by reduction of a carrier gas flow. Calibration samples based on graphite powder and a tenfold dilution of powdered samples with buffer (graphite powder containing 15% NaCl) were used. 5–10 mg of the sample was quite enough to get the detection limits of elements at the level of 0.1–10 μg g? 1. A prior carbonization procedure (not ashing) makes it possible to decrease the detection limits of elements by an order of magnitude. The validation of the techniques was confirmed by the analysis of certified reference materials NIST 8414, BCR 278R and NCS ZC 81001 as well as by using different sample preparation procedures.  相似文献   

5.
A simple, rapid, sensitive and accurate spectrophotometric method for the determination of captopril in pure form and pharmaceutical formulations is developed. The procedure is based on the reaction of copper(II) with captopril in the presence of neocuproine (NC) (2,9-dimethyl-1,10-phenanthroline) reagent in acetate buffer at pH 5.0. Copper(II) is reduced easily by captopril to Cu(I)–neocuproine complex, which shows an absorption maximum at 448 nm. Beer’s law was obeyed in the concentration range 0.3–3.0 μg mL?1 with a minimum detection limit (LOD) of 0.039 μg mL?1 and a quantification limit (LOQ) of 0.129 μg mL?1. For more accurate results, Ringbom optimum concentration ranges was 0.5–2.7 μg mL?1. The apparent molar absorbtivity and Sandell sensitivity were calculated. The validity of the proposed method was tested by analyzing the pure and pharmaceutical formulations and compared well with those obtained by the official method and demonstrated good accuracy and precision.  相似文献   

6.
《Microchemical Journal》2011,97(2):348-351
A sensitive and selective preconcentration method using solid-phase extraction (SPE) disk, namely multiwalled carbon nanotubes (MWCNTs) disk, is proposed for the determination of atrazine and simazine in water samples. Atrazine and simazine were extracted on MWCNTs disk and then determined by gas chromatography–mass spectrometry (GC/MS). Several parameters on the enrichment factor of the analytes were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 5 using 200 mL of validation solution containing 0.1 μg of triazines and 5 mL of acetone as an eluent. The maximum enrichment factors for atrazine and simazine were 3900 ± 250 and 4000 ± 110, respectively when 200 mL of sample solution volume was used. Relative standard deviations for seven determinations were 6.9% (atrazine) and 3.0% (simazine) under optimum conditions. The linear range of calibration curves were 0.1 to 1 ng mL 1 for each analyte with good correlation coefficients. The detection limits (3S/N) were 2.5 and 5.0 pg mL 1 for atrazine and simazine, respectively. The proposed method was successfully applied to the determination of atrazine and simazine in environmental water samples with high precision and accuracy.  相似文献   

7.
The paper presents the preconcentration of trace elements via electrodeposition onto a (micro)aluminum cathode in the presence of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] as a supporting electrolyte. The advantages of the proposed method include very simple instrumentation for the preconcentration of trace elements and low-cost reagents. The experiment showed that the use of ionic liquid in the electrodeposition process significantly improves sensitivity, recovery and detection limits for the determination of trace amounts of iron, cobalt, nickel and zinc. The preconcentrated metals were determined using X-ray fluorescence spectrometry. The optimum parameters for electrodeposition such as pH, the volume of the analyzed solution, the voltage and the deposition time were studied. Under the optimized conditions, the detection limits were 5, 2, 3 and 6 μg L 1 for iron, cobalt, nickel and zinc, respectively. The precision and recovery of the method were in the range of 3–5.5%, and 92–103%, respectively. The calibration was performed using aqueous standards of Fe(III), Co(II), Ni(II) and Zn(II) in the range 0.01–0.25 mg L 1. The method was applied successfully in water analysis.  相似文献   

8.
A rapid, specific and sensitive multiresidue method based on dispersive solid phase extraction sample preparation and gas chromatography with the mass spectrometric detection for the analysis of 234 pesticides in Korean herbs (Acanthopanax senticosus, Morus alba L., Hovenia dulcis) has been developed. Method recoveries were found to be between 62 and 119% with relative standard deviation lower than 21% for all compounds in the concentration range of 0.05 to 0.400 mg kg? 1. Limits of quantification of most compounds are below 0.050 mg kg? 1. The data demonstrate that this method was successfully used for analysis of 234 pesticides in Korean herbs.  相似文献   

9.
《Microchemical Journal》2011,97(2):277-282
UV photochemical vapor generation (photo-CVG) as sample introduction was first adapted for determination of ultratrace cobalt by atomic fluorescence spectrometry (AFS). Cobalt volatile species can be generated when the buffer system of formic acid and formate containing Co (II) is exposed to UV radiation. The generated gaseous products were separated from liquid phase within a gas–liquid separator and then transported to AFS for determination of cobalt. Factors affecting the efficiency of photo-CVG were investigated in detail, including type and concentration of low molecular weight (LMW) organic acid, buffer system, UV irradiation time, reaction temperature, carrier gas flow rate and hydrogen flow rate. With 4% (v/v) HCOOH and 0.4 mol L 1 HCOONa buffer solution, 150 s irradiation time and 15 W low pressure mercury lamp, a generation efficiency of 23–25% was achieved. A limit of detection (LOD) of 0.08 ng mL 1 without any pre-concentration procedure and a precision of 2.2% (RSD, n = 11) at 20 ng mL 1 were obtained under the optimized conditions. The proposed method was successfully applied in the analysis of several simple matrix real water samples.  相似文献   

10.
An enantioselective stability-indicating high performance liquid chromatographic method was developed for the analysis of arotinolol in standard solution. The degradation behaviour of arotinolol was investigated under different stress conditions recommended by International Conference on Harmonization (ICH). Resolution of the drug and complete separation from its degradation products were successfully achieved on a Chirobiotic V column, using UV detector set at 315 nm, polar organic mobile phase (POM) consisting of methanol:glacial acetic acid:triethylamine, 100:0.02:0.03, (v/v/v), and a flow rate of 1 ml/min. The drug was subjected to oxidation, hydrolysis, photolysis, and heat to apply stress conditions. The drug was found to degrade in alkaline, acidic, oxidative conditions and when exposed to heat. The drug was stable to sunlight. The method reported here has also been successfully applied to pharmaceutical formulation and to human plasma that spiked with stock solutions of arotinolol enantiomers.Arotinolol enaniomers were recovered from plasma by using liquid–liquid extraction procedure with ethyl ether. The method was highly specific, where degradation products and coformulated compounds did not interfere, and was sensitive with good precision and accuracy and was linear over the range of 50–400 ng/ml (R2 > 0.9981) with a detection limit of 20 ng/ml for each enantiomer. The mean extraction efficiency for arotinolol was in the ranges 96–104% for each enantiomer. The mean relative standard deviation (RSD) of the results of within-day precision and accuracy of the drug were ?7.1%. There was no significant difference between inter- and intra-day studies for each enantiomers which confirmed the reproducibility of the assay. The overall recoveries of arotinolol enantiomers from pharmaceutical formulations were in the ranges 97.6–101.8%.  相似文献   

11.
A novel procedure for trace methylmercury determinations by anodic stripping voltammetry at a gold film electrode is presented. Measurements were performed in a flow system. For selective determination of methylmercury, the Hg2+ ions were masked by complexation with DTPA. Hg-DTPA complex is not reduced at the gold film electrode at the potential of methylmercury reduction to the metallic state. The calibration graph was linear from 5 × 10−9 to 1 × 10−7 mol L−1 for an accumulation time 600 s. A detection limit (based on 3σ criterion) for methylmercury was 2.3 × 10−9 mol L−1. The validation of the proposed procedure was made by analyses of human hair certified reference material.  相似文献   

12.
A method for determining the volatile organic compounds (VOCs) in textiles was developed, by the use of high capacity headspace, solid phase micro extraction (SPME) and gas chromatography–mass spectrometry (GC/MS). The detection targets contained total organic compounds (TVOCs) and six specific substances (toluene, vinylcyclohexene, styrene, 4-phenylcyclohexene, vinylchloride and butadiene), according to Oeko-Tex Standard 100. A designed experiment was used to optimize the headspace–SPME–GC/MS operation, and the method was validated in terms of linearity, limit of detection (LOD) and method precision. It was found that at a loading ratio of 10 m2/m3, the LODs for toluene, vinylcyclohexene, styrene and 4-phenylcyclohexene were 0.0002 mg/m2, 0.01 mg/m2, 0.01 mg/m2 and 0.0001 mg/m2 respectively, while for vinylchloride and butadiene they were both 0.08 mg/m2. SPME exhibited better adsorption performance for toluene, vinylcyclohexene, styrene and 4-phenylcyclohexene, for which the extraction fractions were 10 times of those for vinylchloride and butadiene. The method developed was successfully applied to analyze several commercial textiles, and would be a simple, efficient and promising technique for the analysis of volatile compounds from textiles or other samples (such as polymer materials).  相似文献   

13.
Conventional approaches for the analysis of platinum group elements (PGEs) in plant material suffer from sample digestion which results in sample dilution and therefore requires high sample intakes to maintain the sensitivity. The presented solid-sampling method avoids sample digestion while improving sensitivity when compared to digestion-based inductively coupled plasma optical emission spectrometry (ICP-OES) methods and allows the analysis of sample masses of 5 mg or less. Detection limits of 0.38 μg g 1, 0.14 μg g 1 and 0.13 μg g 1 were obtained for Pt, Pd and Rh, respectively using a sample intake of 5 mg. The reproducibility of the procedure ranged between 4.7% (Pd) relative standard deviation (RSD, n = 7) and 7.1% (Rh) RSD for 25 ng analytes. For quantification, aqueous standards were applied on paper filter strips and dried. Only the dried filters were introduced into the electrothermal vaporization unit. This approach successfully removed memory-effects observed during analysis of platinum which occurred only if liquid standards came into contact with the graphite material of the furnace. The presented method for overcoming the Pt-memory-effects may be of further interest for the analysis of other carbide-forming analytes as it does not require any technical modification of the graphite furnace (e.g., metal inlays, pyrolytic coating). Owing to lack of suitable certified reference materials, the proposed method was compared with conventional ICP-OES analysis of digested samples and a good agreement was obtained. As a result of the low sample consumption, it was possible to determine the spatial distribution of PGEs within a single plant. Significant differences in PGE concentrations were observed between the shoots (stem, leaves) and the roots. Pd was mainly found in the roots, whereas Pt and Rh were also found in higher concentrations in the shoots.  相似文献   

14.
A sensitive and selective liquid chromatographic–tandem mass spectrometric (LC–MS–MS) method was developed to determine pantoprazole sodium (PNT) in human urine. After solid-phase extraction with SPE cartridge, the urine sample was analysed on a C18 column (symmetry 3.5 μm; 75 mm × 4.6 mm i.d) interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of acetonitrile–water (90:10, v/v). The method was linear over a concentration range of 1–100 ng mL?1. The lower limit of quantitation was 1 ng mL?1. The intra-day and inter-day relative standard deviation across three validation runs over the entire concentration range was <10.5%. The accuracy determined at three concentrations (8.0, 50.0 and 85.0 ng mL?1 PNT) was within ±1.25% in terms of relative errors.  相似文献   

15.
The experimental densities for the binary or ternary systems were determined at T = (298.15, 303.15, and 313.15) K. The ionic liquid methyl trioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA]+[Tf2N]) was used for three of the five binary systems studied. The binary systems were ([MOA]+[Tf2N] + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate). The ternary systems were {methyl trioctylammonium bis(trifluoromethylsulfonyl)imide + 2-propanol or 1-butanol or 2-butanol + ethyl acetate}. The binary and ternary excess molar volumes for the above systems were calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was fitted to the binary excess molar volume data. Virial-Based Mixing Rules were used to correlate the binary excess molar volume data. The binary excess molar volume results showed both negative and positive values over the entire composition range for all the temperatures.The ternary excess molar volume data were successfully correlated with the Cibulka equation using the Redlich–Kister binary parameters.  相似文献   

16.
Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen–oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g 1 in procedures i–v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g 1 in procedures i–iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50–110 ng g 1 in crude oil, < 0.4–6 ng g 1 in gasoline, < 0.5–2 ng g 1 in atmospheric oil, < 6–100 ng g 1 in heavy vacuum oil and 140–300 ng g 1 in distillation residue.  相似文献   

17.
In this study, a method employing ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was developed to simultaneously screen for 36 endocrine-disrupting chemicals (EDCs; e.g., estrogens, progestogens, phenols, and their metabolites) both in potable and river water. From the selected compounds, 21 target compounds, for which reference standards were available, were used as model compounds for method development and optimization. The other target compounds, for which reference standards were unavailable, were investigated in post-target analysis on the basis of their theoretical molecular masses. The solid-phase extraction and chromatographic separation steps were optimized. For this method, limits of detection for the target compounds were less than 0.72 ng L? 1, and the overall recoveries varied between 46% and 134% with relative standard deviations ranging from 7% to 35%. The mass errors between theoretical and experimental mass for all resulting precursor and characteristic fragment ions ranged from ? 1.9 to 2.8 mDa. The method developed was successfully used to analyze the composition of potable and river water in Shanghai City; in addition, some compounds of interest (estriol, estrone, and bisphenol A) were identified accurately. Further, a post-target analysis was performed and an estrogen metabolite was hypothesized in the water samples due to the excellent sensitivity of the method in full-spectrum acquisition mode and the valuable accurate mass information in MS and tandem MS mode. Therefore, UPLC-Q-TOF-MS has proven to be a powerful technique for wide-scope screening and identification of relevant EDCs in environmental water sources.  相似文献   

18.
The present paper proposes an on-line pre-concentration system for cadmium determination in drinking water using flame atomic absorption spectrometry (FAAS). Cadmium(II) ions are retained as 1-(2-pyridylazo)-2-naphthol (PAN) complex at the walls of a knotted reactor, followed of elution using hydrochloric acid solution. The optimization was performed in two steps using factorial design for preliminary evaluation and a Box–Behnken design for determination of the critical experimental conditions. The variables involved were: sampling flow-rate, reagent concentration, pH and buffer concentration, and as response the analytical signal (absorbance). The validation process was performed considering the parameters: linearity and other characteristics of the calibration curve, analytical features of on-line pre-concentration system, precision, effect of other ions in the pre-concentration system and accuracy. Using the optimized experimental conditions, the procedure allows cadmium determination with a detection limit (3 σ / S) of 0.10 μg L 1, a quantification limit (10 σ / S) of 0.33 μg L−1, and a precision, calculated as relative standard deviation (RSD) of 2.7% (n = 7) and 2.4% (n = 7) for cadmium concentrations of 5 and 25 μg L 1, respectively. A pre-concentration factor of 18 and a sampling frequency of 48 h−1 were obtained. The recovery for cadmium in the presence of several ions demonstrated that this procedure could be applied for the analysis of water samples. The method was applied for cadmium determination in drinking water samples collected in Salvador City, Brazil. The cadmium concentrations found in five samples were lower than the maximum permissible levels established by the World Health Organization.  相似文献   

19.
A new β-cyclodextrin (β-CD) inclusion compound Zn(2H1NA)2·2β-CD (2H1NA = 2-hydroxy-1-naphthoic acid) was prepared. The structure was characterized by 1H NMR, IR, the fluorescence spectra, thermogravimetric analysis (TG–DTA) and elementary analysis. Meanwhile, the mechanism of the formation of the supramolecular system (2H1NA:Zn(II):β-CD) was studied and discussed by spectrofluorimetry. The results showed that the naphthalene rings of the Zn(II) aromatic complex Zn(2H1NA)2 were encapsulated within the β-CD's cavity to form a 2:1 stoichiometry host–guest compound. The inclusion constant calculated was 1.27 × 104 (L/mol)2. A spectrofluorimetric method for the determination of 2H1NA in bulk aqueous solution in the presence of β-CD was developed based on the great enhancement of the fluorescence intensity of 2H1NA. The linear relationship was obtained in the range of 9.00 × 10?7 to 2.50 × 10?5 mol/L and the detection limit was 8.00 × 10?7 mol/L. The proposed method was successfully applied to determine 2H1NA in waste water with recoveries of 97–104%.  相似文献   

20.
A novel, highly selective method for the determination of nicotine, N-nitrosamines and tobacco-specific nitrosamines (TSNAs) in indoor dust samples is presented in this study. Samples were extracted by in-cell clean-up pressurized liquid extraction (PLE) that allows high extraction efficiency with moderate consumption of organic solvents. The extracts were analyzed by comprehensive gas chromatography and detected with a nitrogen chemiluminiscence detector (GC × GC-NCD) that provided enhanced selectivity and sensitivity for organic nitrogen containing compounds. Method validation showed good linearity, repeatability and reproducibility (%RSD < 8%). Recovery was higher than 80% for most target compounds and limits of detection lower than 16 ng g?1. The method was used for the determination of the nitrosamine target compounds in house dust samples from both smoking and non-smoking households. All the analytes were found in the samples, nicotine being the most abundant compound in smokers’ dust and one of the most abundant in non-smokers’ dust. To our knowledge this is the first time that volatile N-nitrosamines and TSNAs have been determined in indoor dust samples. The results demonstrate the presence of these highly carcinogenic compounds in house dust, with inherent human exposure through inhalation and/or involuntary ingestion of house dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号