首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
本征值问题是自然科学中基本运算之一,对于超大矩阵的对角化是当今许多科学问题的瓶颈。在应用原子核壳模型理论研究较重的原子核结构时,因为壳模型组态太大,通常的方法是基于各种物理考虑做某些组态截断,另一个思路是利用新的算法和飞速发展的计算机资源对这些大矩阵对角化或者近似对角化。总结了本课题组近年来在壳模型哈密顿量本征值近似方面研究的主要结果,包括最低本征值半经验公式及多种外推方法、本征值与对角元的相关性等。The eigenvalue problem is one of the fundamental issues of sciences. Many research fields have been challenged by diagonalizing huge matrices. The nuclear structure theorists face this problem in studies of medium-heavynuclei in terms of the nuclear shell model, in which the configuration space is too gigantic to handle. Thus one usually truncates the nuclear shell model configuration space based on various considerations. Another approach is to make use of super computers by various algorithms, and/or to obtain approximate eigenvalues. In this paper we review our recent efforts in obtaining approximate eigenvalues of the nuclear shell model Hamiltonian, with the focus on our semi-empirical approach and a number of extrapolation approaches towards predicting the lowest eigenvalue, as well as strong correlation between the sorted eigenvalues and the diagonal matrix elements, and so on.  相似文献   

2.
彭世国  禹思敏 《中国物理 B》2009,18(9):3758-3765
A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi--Sugeno (TS) fuzzy IF--THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov--Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.  相似文献   

3.
丁霈泽  易为 《中国物理 B》2022,31(1):10309-010309
We study two-body non-Hermitian physics in the context of an open dissipative system depicted by the Lindblad master equation.Adopting a minimal lattice model of a handful of interacting fermions with single-particle dissipation,we show that the non-Hermitian effective Hamiltonian of the master equation gives rise to two-body scattering states with state-and interaction-dependent parity-time transition.The resulting two-body exceptional points can be extracted from the trace-preserving density-matrix dynamics of the same dissipative system with three atoms.Our results not only demonstrate the interplay of parity-time symmetry and interaction on the exact few-body level,but also serve as a minimal illustration on how key features of non-Hermitian few-body physics can be probed in an open dissipative many-body system.  相似文献   

4.
For the first time, we introduce a fully quantum mechanical Hamiltonian for a semi-infinite chain model of atoms. We then derive the vibration modes of this model by virtue of the "invariant eigen-operator" method in two different cases, which is concise and revealing.  相似文献   

5.
We investigate an entangled three-qubit system in which only one of the qubits experiences the decoherence effect by considering a non-Hermitian Hamiltonian,while the other two qubits are isolated,i.e.,do not interact with environment,directly.Then,the time evolution of the density matrix(for the pure as well as mixed initial density matrix)and the corresponding reduced density matrices are obtained,by which we are able to utilize the dissipative non-Hermitian Hamiltonian model with Markovian and non-Markovian regimes via adjusting the strange of the non-Hermitian term of the total Hamiltonian of the under-considered system.  相似文献   

6.
赵玉民 《中国物理 C》2008,32(Z2):106-108
In this paper we study collective motion under random two-body interactions in the fermion dynamical symmetry Model (FDSM). It is found that a Hamiltonian with the SO(8) symmetry of the FDSM does not give generic vibration and rotation under random interactions while that with the SP(6) symmetry does.  相似文献   

7.
陈斯纳  张靖仪 《中国物理 B》2015,24(2):20401-020401
In this paper,a canonical ensemble model for black hole quantum tunneling radiation is introduced.We find that the probability distribution function is the same as the emission rate of a spherical shell in the Parikh-Wilczek tunneling framework.With this model,the probability distribution function corresponding to the emission shell system is calculated.Therefore,the concrete quantum tunneling spectrum of the Schwarzschild black hole is obtained.  相似文献   

8.
赵英奎  陈式刚  王光瑞 《中国物理》2007,16(10):2848-2854
In this paper, we have introduced a shell-model of Kraichnan's passive scalar problem. Different from the original problem, the prescribed random velocity field is non-Gaussian and $\delta$ correlated in time, and its introduction is inspired by She and L\'{e}v\^{e}que (Phys. Rev. Lett. {\bf 72}, 336 (1994)). For comparison, we also give the passive scalar advected by the Gaussian random velocity field. The anomalous scaling exponents $H(p)$ of passive scalar advected by these two kinds of random velocities above are determined for structure function with values of $p$ up to 15 by Monte Carlo simulations of the random shell model, with Gear methods used to solve the stochastic differential equations. We find that the $H(p)$ advected by the non-Gaussian random velocity is not more anomalous than that advected by the Gaussian random velocity. Whether the advecting velocity is non-Gaussian or Gaussian, similar scaling exponents of passive scalar are obtained with the same molecular diffusivity.  相似文献   

9.
We propose a new approach to the old-standing problem of the anomaly of the scaling exponents of passive scalars of turbulence. Different to the original problem, the distribution function of the prescribed random velocity field is multi-dimensional normal and delta-correlated in time. Here, our random velocity field is spatially correlative. For comparison, we also give the result obtained by the Gaussian random velocity field without spatial correlation. The anomalous scaling exponents H(p) of passive scalar advected by two kinds of random velocity above are determined for structure function up to p= 15 by numerical simulations of the random shell model with Runge-Kutta methods to solve the stochastic differential equations. We observed that the H(p) 's obtained by the multi-dimeasional normal distribution random velocity are more anomalous than those obtained by the independent Gaussian random velocity.  相似文献   

10.
We theoretically investigate the Kondo effect of a three-terminal transport quantum dot (QD) embedded in an Aharonov-Bohm ring in the Kondo regime by means of the one-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We find that in this system, the Kondo effect depends sensitively oil the parity and size of the ring; the Kondo screening cloud can be tuned by tuning the coupling strength of the reservoir-dot. Thus this model might be a candidate for future device applications.  相似文献   

11.
We present a comprehensive analysis of the structure of Hamiltonian matrices based on visualization of the matrices in three dimensions as well as in terms of measures for GOE, banded and two-body random matrix ensembles (TBRE). We have considered two nuclear shell model examples, 22Na with Jp T = 2+0\ensuremath J^{\pi} T = 2^+0 and 24Mg with Jp T = 0+0\ensuremath J^{\pi} T = 0^+0 and, for comparison we have also considered the SmI atomic example. It is clearly established that the matrices are neither GOE nor banded. For the TBRE structure we have examined the correlations between diagonal elements and eigenvalues, fluctuations in the basis states variances and structure of the two-body part of the Hamiltonian in the eigenvalue basis. Unlike the atomic example, nuclear examples show that the nuclear shell model Hamiltonians can be well represented by TBRE.  相似文献   

12.
In this paper we study the general behavior of matrix elements of the nuclear shell model Hamiltonian.We find that nonzero off-diagonal elements exhibit a regular pattern,if one sorts the diagonal matrix elements from smaller to larger values.The correlation between eigenvalues and diagonal matrix elements for the shell model Hamiltonian is more remarkable than that for random matrices with the same distribution unless the dimension is small.  相似文献   

13.
《Nuclear Physics A》1997,620(3):296-316
The nearest neighbour level spacing distribution and the Δ3 statistic of level fluctuations associated with very high spin states (I ≳ 30) in rare-earth deformed nuclei are analysed by means of a cranked shell model. The many particle-many hole configurations created in the rotating Nilsson potential are mixed by the surface-delta two-body residual interaction. The levels in the near-yrast region show a Poisson-like level spacing distribution. As the intrinsic excitation energy U increases, the level statistics shows a gradual transition from order to chaos, reaching at U ≳ 2 MeV the Wigner distribution typical-of the Gaussian orthogonal ensemble of random matrices. This transition is caused by the residual two-body interaction. On the other hand, the level spacings between the yrast and the first excited state show a peculiar behaviour, displaying a Wigner-like distribution instead of the Poisson-like distribution seen for the other near-yrast rotational states. The lowest spacings reflect the properties of the single-particle orbits in the mean-field, and are only weakly affected by the residual two-body interaction.  相似文献   

14.
We present results that show that the components of shell-model eigenvectors are not distributed like those of a randomly oriented vector. An argument based on the invariance properties of the ensemble of random matrices arising from two-body hamiltonians is used to suggest the correct form of the distribution. The agreement with distributions obtained in actual shell-model calculations is found to be excellent.  相似文献   

15.
A new version of the nuclear shell model unifies the consideration of the discrete spectrum, where the results reproduce the standard shell model, and continuum. The ingredients of the method are the non-Hermitian effective Hamiltonian, energy-dependent one-body and two-body decay amplitudes, and self-consistent treatment of thresholds. The results for helium and oxygen isotope chains reproduce the data well.  相似文献   

16.
We use a single j-shell model with random two-body interactions to derive closed expressions for the distribution of and the correlations between spectral widths of different spins. This task is facilitated by introducing two-body operators whose squared spectral widths sum up to the squared spectral width of the random Hamiltonian. The spin-0 width is characterized by a relatively large average value and small fluctuations, while the width of maximum spin has the largest average and the largest fluctuations. The approximate proportionality between widths and spectral radii explains the preponderance of spin-0 ground states.  相似文献   

17.
Recently, a new approach, called a non-parametric model of random uncertainties, has been introduced for modelling random uncertainties in linear and non-linear elastodynamics in the low-frequency range. This non-parametric approach differs from the parametric methods for random uncertainties modelling and has been developed in introducing a new ensemble of random matrices constituted of symmetric positive-definite real random matrices. This ensemble differs from the Gaussian orthogonal ensemble (GOE) and from the other known ensembles of the random matrix theory. The present paper has three main objectives. The first one is to study the statistics of the random eigenvalues of random matrices belonging to this new ensemble and to compare with the GOE. The second one is to compare this new ensemble of random matrices with the GOE in the context of the non-parametric approach of random uncertainties in structural dynamics for the low-frequency range. The last objective is to give a new validation for the non-parametric model of random uncertainties in structural dynamics in comparing, in the low-frequency range, the dynamical response of a simple system having random uncertainties modelled by the parametric and the non-parametric methods. These three objectives will allow us to conclude about the validity of the different theories.  相似文献   

18.
We numerically investigate statistical ensembles for the occupations of eigenstates of an isolated quantum system emerging as a result of quantum quenches. The systems investigated are sparse random matrix Hamiltonians and disordered lattices. In the former case, the quench consists of sudden switching‐on the off‐diagonal elements of the Hamiltonian. In the latter case, it is sudden switching‐on of the hopping between adjacent lattice sites. The quench‐induced ensembles are compared with the so‐called “quantum micro‐canonical” (QMC) ensemble describing quantum superpositions with fixed energy expectation values. Our main finding is that quantum quenches with sparse random matrices having one special diagonal element lead to the condensation phenomenon predicted for the QMC ensemble. Away from the QMC condensation regime, the overall agreement with the QMC predictions is only qualitative for both random matrices and disordered lattices but with some cases of a very good quantitative agreement. In the case of disordered lattices, the QMC ensemble can be used to estimate the probability of finding a particle in a localized or delocalized eigenstate.  相似文献   

19.
The main purpose of this work is to elucidate whether there are significant differences in the local fluctuation properties between two-body (TBRE) and orthogonal (OE) ensembles of random matrices. Emphasis is put on the validity of ergodic properties, and results obtained by numerical means are discussed from that point of view. Spectral and ensemble averaging procedures are compared. All the local properties studied show compatibility between TBRE and OE results, and no significant evidence of inconsistency of theoretical predictions and experimental data is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号