首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
2.
To understand how proteins perform their function, knowledge about their structure and dynamics is essential. Here we use a combination of an efficient chemical lysine acetylation reaction and nanoLC-MALDI tandem mass spectrometry to probe the accessibility of every lysine residue in a protein complex. To demonstrate the applicability of this approach, we studied the interaction between the DNase domain of Colicin E9 (E9) and its immunity protein Im9. Free E9 and E9 in complex with Im9 were rapidly acetylated, followed by proteolytic digestion and analysis by LC-MALDI-TOF/TOF MS/MS. Acetylated peptides could be filtered out of the complex peptide mixtures using selective ion chromatograms of the specific immonium marker ions. Additionally, isobaric acetylated peptides, acetylated at different sites, could be separated by their LC retention times. The combination of LC and MALDI-TOF/TOF MS/MS provided information about the amount of acetylation on each individual lysine even for peptides containing several lysine residues. In general, our data agree well with those derived from the crystal structure of E9 and the E9:Im9 complex. Interestingly, next to in the binding interface expected lysines, K89 and K97, two from the crystal structure data unexpected lysines, K81 and K76, were observed to become less exposed upon Im9 binding. Moreover, K55 and K63, positioned in the predicted DNA binding region, were also found to be less accessible upon Im9 binding. These findings may illustrate some of the described differences in the solution-phase structure of the E9:Im9 complex compared with the crystal structure.  相似文献   

3.
The core histones, H2A, H2B, H3 and H4, undergo post‐translational modifications (PTMs) including lysine acetylation, methylation and ubiquitylation, arginine methylation and serine phosphorylation. Lysine residues may be mono‐, di‐ and trimethylated, the latter resulting in an addition of mass to the protein that differs from acetylation by only 0.03639 Da, but that can be distinguished either on high‐performance mass spectrometers with sufficient mass accuracy and mass resolution or via retention times. Here we describe the use of chemical derivatization to quantify methylated and acetylated histone isoforms by forming deuteroacetylated histone derivatives prior to tryptic digestion and bottom‐up liquid chromatography‐mass spectrometric analysis. The deuteroacetylation of unmodified or mono‐methylated lysine residues produces a chemically identical set of tryptic peptides when comparing the unmodified and modified versions of a protein, making it possible to directly quantify lysine acetylation. In this work, the deuteroacetylation technique is used to examine a single histone H3 peptide with methyl and acetyl modifications at different lysine residues and to quantify the relative abundance of each modification in different deacetylase and methylase knockout yeast strains. This application demonstrates the use of the deuteroacetylation technique to characterize modification ‘cross‐talk’ by correlating different PTMs on the same histone tail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Lysine acetylation is an important post‐translational modification (PTM). Since the development of MS‐based proteomics technology, important roles of lysine acetylation beyond histones have focused on chromatin remodeling during the cell cycle and regulation of nuclear transport, metabolism, and translation. Zebrafish (Danio rerio) is a widely used vertebrate model in genetics and biologic studies. Although studies in several mammalian species have been performed, the mechanism of lysine acetylation in D. rerio embryos is incompletely understood. Here, we investigated the global acetylome in D. rerio embryos by using an MS‐based proteomics approach. We identified 351 acetylated peptides and 377 nonredundant acetylation sites on 189 lysine‐acetylated proteins in 5‐day postfertilization (hpf) embryos of D. rerio. Among lysine‐acetylated peptides, 40.2% indicated three motifs: (ac)KxxxK, (ac)KxxxxK, and Lx(ac)K. Of 190 acetylated proteins, 81 (42.6%) were mainly distributed in the cytoplasm. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that lysine acetylation in D. rerio was enriched in metabolic pathways. Additionally, 17 of 30 acetylated ribosomal proteins were evolutionarily conserved between zebrafish and humans. Our results indicate that acetyllysine might have regulatory effects on ribosomal proteins involved in protein biosynthesis.  相似文献   

5.
6.
7.
Our earlier investigations identified acetoxy drug: protein transacetylase (TAase), a unique enzyme in the endoplasmic reticulum (ER) catalyzing the transfer of acetyl groups from polyphenolic acetates (PA) to certain functional proteins. Recently we have established the identity of TAase with ER protein calreticulin (CR) and subsequently transacetylase function of CR was termed calreticulin transacetylase (CRTAase). CRTAase was purified and characterized from human placenta. CRTAase catalyzed the acetylation of a receptor protein nNOS, by a model PA 7, 8-diacetoxy-4-methylcoumarin (DAMC), which was visually confirmed by using antiacetyl lysine. The aim of this report was to provide tacit proof by providing mass spectrometry evidence for CRTAase catalyzed acetylation of purified nNOS by DAMC. For this purpose, purified nNOS was incubated with DAMC and CRTAase, the modified nNOS was analyzed by nanoscale LC-MS/MS, which recorded 11 distinct peptides with a significant score as acetylated on lysine residues. The distribution was in order: lysines-24, -33, -38, -131, and -229 of the PDZ domain, Lys-245 of the oxygenase domain, Lys-754 and -856 of FMN binding domain, Lys-989 of connecting domain and Lys-1300, -1321, and -1371 of the NADPH-binding domain were acetylated. The results documented in this paper highlighted for the first time modification of nNOS by way of acetylation. Our earlier work recorded the profound activation of platelet NADPH cytochrome P-450 reductase and the acetylation of the reductase protein by DAMC, which also remarkably enhanced intracellular levels of nitric oxide. The results reported here coupled with the aforementioned previous observations strongly implicate the possible role of the acetylation of the reductase domain of nitric oxide synthase (NOS) in the NOS activation. In addition, the acetylation of nNOS can be expected to potentiate the interaction with CR, eventually leading to the augmented catalytic activity of NOS and expression of the related biological effects.  相似文献   

8.
One of characteristic features of AIDS-related encephalitis and dementia is the infiltration of monocytes into the CNS. HIV-1 Tat was demonstrated to facilitate monocyte entry into the CNS. In this study, we examined the effect of HIV-1 Tat on the expression of adhesion molecules, generation of reactive oxygen species (ROS) and NF-kappaB activation in CRT-MG human astroglioma cells. Treatment of CRT-MG cells with HIV-1 Tat protein significantly increased protein and mRNA levels of ICAM-1 and VCAM-1, as measured by Western blot analysis and RT-PCR, indicating that Tat increases these protein levels at an mRNA level. In addition, Tat induced the activation of NF-kappaB in astrocytes. Treatment of CRT-MG with NF-kappaB inhibitors led to decrease in Tat-induced protein and mRNA expression of ICAM-1 and VCAM-1. Furthermore, HIV-1 Tat protein increased ROS generation. Inhibition of Tat-induced ROS generation by N-acetyl cysteine, vitamin C and diphenyl iodonium suppressed Tat-induced NF-kappaB activation, ICAM-1 and VCAM-1 expression, and monocyte adhesion in CRT-MG. These data indicate that HIV-1 Tat can modulate monocyte adhesiveness by increasing expression of adhesion molecules such as ICAM-1 and VCAM-1 via ROS- and NF-kappaB-dependent mechanisms in astrocytes.  相似文献   

9.
Peptide-mediated protein delivery into living cells has been attracting our attention. Among the peptides that have been reported to have carrier activity, the one from the human immunodeficient virus (HIV)-1 Tat has been most often used for the introduction of exogenous macromolecules into cells. We have shown that not only the Tat peptide, but also various arginine-rich peptides showed very similar characteristics in translocation, and the possible presence of ubiquitous internalization mechanisms among the arginine-rich peptides has also been suggested. These arginine-rich peptides includes ones derived from HIV-1 Rev and flock house virus coat proteins. The linear- and branched-chain peptides containing approximately 8 residues of arginine also show a similar ability. In this review, we present the structural variety of membrane permeable peptides and provide a survey of the findings on the translocation of these peptides through the cell membranes.  相似文献   

10.
Our earlier reports documented that calreticulin, a multifunctional Ca2+-binding protein in endoplasmic reticulum lumen, possessed protein acetyltransferase function termed Calreticulin Transacetylase (CRTAase). The autoacetylation of purified human placental CRTAase concomitant with the acetylation of receptor proteins by a model acetoxycoumarin, 7,8-Diacetoxy-4-methylcoumarin, was observed. Here, we have examined the autoacetylation property of CRTAase by immunoblotting and mass spectrometry. Ca2+ was found to inhibit CRTAase activity. The inhibition of both autoacetylation of CRTAase as well as acetylation of the receptor protein was apparent when Ca2+ was included in the reaction mixture as visualized by interaction with anti-acetyl lysine antibody. The acetylation of lysines residues: −48, −62, −64, −153, and −159 in N-domain and −206, −207, −209, and −238 in P-domain of CRTAase were located by high-performance liquid chromatography-electronspray ionization tandem mass spectrometry. Further, computer assisted protein structure modeling studies were undertaken to probe the effect of autoacetylation of CRTAase. Accordingly, the predicted CRTAase 3D model showed that all the loop regions of both N- and P-domain bear the acetylated lysines. Energy minimization of the acetylated residues revealed charge neutralization of lysines due to the N-ε-acetylation which may facilitate the interaction of CRTAase with the protein substrate and the subsequent transacetylase action. An erratum to this article can be found at  相似文献   

11.
The application of a hypothesis-driven method for the sensitive determination of lysine acetylation sites on enzymatically digested proteins is described. Comparative sensitivity tests were carried out using serial dilution of an acetylated bovine serum albumin (AcBSA) digest to assess the performance of a multiple reaction monitoring (MRM)-based approach as compared to a more conventional precursor scanning (PS) method. Both methods were capable of selectively detecting an acetylated peptide at the low femtomole level when spiked into a background of 500 fmol six-protein tryptic digest. The MRM approach was roughly tenfold more sensitive than precursor scanning with one acetylated peptide detected and sequenced at the level of 2 fmol on-column. The technique was subsequently applied to a gel-derived sample of cytokeratin-8 (CK8) shown to contain acetylated lysine residues by Western blot analysis. The strategy applied herein, termed MRM-initiated detection and sequencing (MIDAS), resulted in the facile identification of novel sites of acetylation on this protein.  相似文献   

12.
Leaving marks: the number of known posttranslational modifications for lysine has been expanded considerably. In addition to acetylation of side-chain amino functionalities of lysine residues in proteins, crotonylation, succinylation, and malonylation have now been identified as posttranslational modifications in histone and in non-histone proteins.  相似文献   

13.
14.
15.
Replication of human immunodeficiency virus type 1 (HIV-1) requires specific interactions of Tat protein with the transactivation responsive region (TAR) RNA. Disruption of Tat-TAR RNA interaction could inhibit HIV-1 replication. Here four target compounds were designed and synthesized to bind to TAR RNA for blocking the interaction of Tat-TAR RNA. The core molecule 6,6'-diamino-6,6' -dideoxy-α,α-trehalose was obtained from selective bromination of α,α-trehalose at C-6,6', fo…  相似文献   

16.
17.
Biocompatible, self-assembled nanostructures are attracting ever more attention, in particular in aqueous media for biomedical applications. Here, we present the successful, solid-phase peptide synthesis (SPPS) and characterization of short amino acid sequences with amphiphilic character with the aim of gaining insight into their self-assembled, supramolecular structures. The peptide design includes three parts: (a) a charged lysine part, (b) an acetylated lysine part, and (c) a constant hydrophobic rodlike helix, based on gramicidin A (gA). By stepwise replacement of free lysine (K) with acetylated lysine (X) we generated a library of a total of 10 peptides, Ac-X(8)-gA and K(m)X(8-m)-gA (m ranging from 0 to 8). By using point mutations, we adjusted the degree of acetylation (DA) and thus the overall amphiphilicity of the peptides, which led to a change in the secondary structure in the aqueous environment from a β-sheet to an α-helix. This transition generated a significant change in the morphology of the self-assembled structures from fibers to micelles. Two different regions were observed for the conformation of the hydrophilic part of the peptide: one region, a β-sheet-like secondary structure, inducing fiber formation (high DA), the other an α-helical-like secondary structure, generating micelle formation (moderate and low DA). The micellar structures depended on the degree of acetylation, which influenced their critical micelle concentration (cmc). These morphology regions were determined by a combination of circular dichroism, dynamic light scattering, surface tension, and transmission electron microscopy, which allowed us to correlate the generated supramolecular architectures with the fine changes obtained by means of the point mutation strategy.  相似文献   

18.
19.
Methylation and acetylation of protein lysine residues constitute abundant post-translational modifications (PTMs) that regulate a plethora of biological processes. In eukaryotic proteins, lysines are often mono-, di-, or trimethylated, which may signal different biological outcomes. Deconvoluting these different PTM types and PTM states is not easily accomplished with existing analytical tools. Here, we demonstrate the unique ability of NMR spectroscopy to discriminate between lysine acetylation and mono-, di-, or trimethylation in a site-specific and quantitative manner. This enables mapping and monitoring of lysine acetylation and methylation reactions in a nondisruptive and continuous fashion. Time-resolved NMR measurements of different methylation events in complex environments including cell extracts contribute to our understanding of how these PTMs are established in vitro and in vivo.  相似文献   

20.
Despite their biological importance, post-translationally modified proteins are notoriously difficult to produce in a homogeneous fashion by using conventional expression systems. Chemical protein synthesis or semisynthesis offers a solution to this problem; however, traditional strategies often rely on sulfur-based chemistry that is incompatible with the presence of any cysteine residues in the target protein. To overcome these limitations, we present the design and synthesis of γ-selenolysine, a selenol-containing form of the commonly modified proteinogenic amino acid, lysine. The utility of γ-selenolysine is demonstrated with the traceless ligation of the small ubiquitin-like modifier protein, SUMO-1, to a peptide segment of human glucokinase. The resulting polypeptide is poised for native chemical ligation and chemoselective deselenization in the presence of unprotected cysteine residues. Selenolysine's straightforward synthesis and incorporation into synthetic peptides marks it as a universal handle for conjugating any ubiquitin-like modifying protein to its target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号