首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ab initio molecular orbital calculations were performed on the pairing and stacking interaction energies between bases in nucleic acids. Using these values we could explain the biologically important phenomena well. Thus the fact that O6-methylguanine (which is formed in small amounts) is more promutagenic than N7-methylguanine (which is formed in larger amounts) could be explained by the difference in pairing interaction energies for these alkylguanines. To clarify the detailed mechanism of mutation induced by a base analogue (2-aminopurine) the interaction energy for the 2-aminopurine-cytosine pair was calculated by taking into account the tautomeric conversion of base and the base analogue. It was concluded that the base pair formed as an intermediate between the normal form of 2-aminopurine and the imino tautomer of cytosine has an important role in inducing the mutation by 2-aminopurine. The stacking interaction energy was found to be a principal factor in determining the conformation of nucleic acids, and it predicted the preference for the A-form or B-form of the deoxyoligonucleotides well. The stacking interaction energy was resolved into its components, and it was shown that electrostatic energy was base sequence-dependent, whereas the overall stability of the stacked polymers was largely dependent on the dispersion energy.  相似文献   

2.
Non-covalent interactions play an important role in chemistry, physics and especially in biodisciplines. They determine the structure of biomacromolecules such as DNA and proteins and are responsible for the molecular recognition process. Theoretical evaluation of interaction energies is difficult; however, perturbation as well as variation (supermolecular) methods are briefly described. Accurate interaction energies can be obtained by complete basis set limit calculations providing a large portion of correlation energy is covered (e.g. by performing CCSD(T) calculations). The role of H-bonding and stacking interactions in the stabilisation of DNA, oligopeptides and proteins is described, and the importance of London dispersion energy is shown.  相似文献   

3.
The present work characterizes the gas-phase stacking interactions between four aromatic amino acid residues (histidine, phenylalanine, tyrosine, and tryptophan) and adenine or 3-methyladenine due to the proposed utilization of these interactions by enzymes that repair DNA alkylation damage. The MP2 potential energy surfaces of the stacked dimers are considered as a function of four variables (vertical displacement, angle of rotation, horizontal displacement, and tilt angle) using a variety of basis sets. It is found that the maximum stacking interaction energy decreases with the amino acid according to TRP > TYR approximately HIS > PHE for both nucleobases. However, the magnitude of the stacking interaction significantly increases upon alkylation (by 50-115%). Comparison of the stacking energies calculated using our surface scans to those estimated from experimental crystal structures indicates that the stacking interactions within the active site of 3-methyladenine DNA glycosylase can account for 65-75% of the maximum possible stacking interaction between the relevant molecules. The decrease in stacking in the crystal structure arises due to significant differences in the relative orientations of the nucleobase and amino acid. Nevertheless, alkylation is found to significantly increase the stacking energy when the crystal structure geometries are considered. Our calculations provide computational support for suggestions that alkylation enhances the stacking interactions within the active site of DNA repair enzymes, and they give a measure of the magnitude of this enhancement. Our results suggest that alkylation likely plays a more important role in substrate identification and removal than the nature of the aromatic amino acid that interacts with the substrate via stacking interactions.  相似文献   

4.
The unwinding free energy of 128 DNA octamers was correlated with the sum of interaction energies among DNA bases and their solvation energies. The former energies were determined by using the recently developed density functional theory procedure augmented by London dispersion energy (RI-DFT-D) that provides accurate hydrogen-bonding and stacking energies highly comparable with CCSD(T)/complete basis set limit benchmark data. Efficient tight-binding DFT covering dispersion energy was also used and yielded satisfactory results. The latter method can be used for extended systems. The solvation energy was determined by using a C-PCM continuum solvent at HF level calculations. Various models were adopted to correlate theoretical energies with experimental unwinding free energies. Unless all energy components (hydrogen-bonding, intra- and interstrand-stacking, and solvation energies) were included and weighted individually, no satisfactory correlation resulted. The most advanced model yielded very close correlation (RMSE=0.32 kcal mol(-1)) fully comparable with the entirely empirical correlation introduced in the original paper. Analysis of the theoretical results shows the importance of inter- and intramolecular stacking energies, and especially the latter term plays a key role in determining DNA-duplex stabilization.  相似文献   

5.
Stabilization energies of the H-bonded and stacked structures of a DNA base pair were studied in the crystal structures of adenine-thymine, cytosine-guanine, and adenine-cytosine steps as well as in the 5'-d(GCGAAGC)-3' hairpin (utilizing the NMR geometry). Stabilization energies were determined as the sum of the complete basis set (CBS) limit of MP2 stabilization energies and the Delta E(CCSD(T)) - Delta E(MP2) correction term evaluated with the 6-31G*(0.25) basis set. The CBS limit was determined by a two-point extrapolation using the aug-cc-pVXZ basis sets for X = D and T. While the H-bonding energies are comparable to those of base pairs in a crystal and a vacuum, the stacking energies are considerably smaller in a crystal. Despite this, the stacking is still important and accounts for a significant part of the overall stabilization. It contributes equally to the stability of DNA as does H-bonding for AT-rich DNAs, while in the case of GC-rich DNAs it forms about one-third of the total stabilization. Interstrand stacking reaches surprisingly large values, well comparable to the intrastrand ones, and thus contributes significantly to the overall stabilization. The hairpin structure is characterized by significant stacking, and both guanine...cytosine pairs possess stacking energies larger than 11.5 kcal/mol. A high portion of stabilization in the studied hairpin comes from stacking (similar to that found for AT-rich DNAs) despite the fact that it contains two GC Watson-Crick pairs having very large H-bonding stabilization. The DFT/B3LYP/6-31G** method yields satisfactory values of interaction energies for H-bonded structures, while it fails completely for stacking.  相似文献   

6.
Through the use of the one-step perturbation approach, 130 free energies of base stacking and 1024 free energies of base pairing in DNA have been calculated from only five simulations of a nonphysical reference state. From analysis of a diverse set of 23 natural and unnatural bases, it appears that stacking free energies and stacking conformations play an important role in pairing of DNA nucleotides. On the one hand, favourable pairing free energies were found for bases that do not have the possibility to form canonical hydrogen bonds, while on the other hand, good hydrogen-bonding possibilities do not guarantee a favourable pairing free energy if the stacking of the bases dictates an unfavourable conformation. In this application, the one-step perturbation approach yields a wealth of both energetic and structural information at minimal computational cost.  相似文献   

7.
Planar H-bonded and stacked structures of guanine...cytosine (G.C), adenine...thymine (A...T), 9-methylguanine...1-methylcytosine (mG...mC), and 9-methyladenine...1-methylthymine (mA...mT) were optimized at the RI-MP2 level using the TZVPP ([5s3p2d1f/3s2p1d]) basis set. Planar H-bonded structures of G...C, mG...mC, and A...T correspond to the Watson-Crick (WC) arrangement, in contrast to mA...mT for which the Hoogsteen (H) structure is found. Stabilization energies for all structures were determined as the sum of the complete basis set limit of MP2 energies and a (DeltaE(CCSD(T)) - DeltaE(MP2)) correction term evaluated with the cc-pVDZ(0.25,0.15) basis set. The complete basis set limit of MP2 energies was determined by two-point extrapolation using the aug-cc-pVXZ basis sets for X = D and T and X = T and Q. This procedure is required since the convergency of the MP2 interaction energy for the present complexes is rather slow, and it is thus important to include the extrapolation to the complete basis set limit. For the MP2/aug-cc-pVQZ level of theory, stabilization energies for all complexes studied are already very close to the complete basis set limit. The much cheaper D-->T extrapolation provided a complete basis set limit close (by less than 0.7 kcal/mol) to the more accurate T-->Q term, and the D-->T extrapolation can be recommended for evaluation of complete basis set limits of more extended complexes (e.g. larger motifs of DNA). The convergency of the (DeltaE(CCSD(T)) - DeltaE(MP2)) term is known to be faster than that of the MP2 or CCSD(T) correlation energy itself, and the cc-pVDZ(0.25,0.15) basis set provides reasonable values for planar H-bonded as well as stacked structures. Inclusion of the CCSD(T) correction is essential for obtaining reliable relative values for planar H-bonding and stacking interactions; neglecting the CCSD(T) correction results in very considerable errors between 2.5 and 3.4 kcal/mol. Final stabilization energies (kcal/mol) for the base pairs studied are very substantial (A...T WC, 15.4; mA...mT H, 16.3; A...T stacked, 11.6; mA...mT stacked, 13.1; G...C WC, 28.8; mG...mC WC, 28.5; G...C stacked, 16.9; mG...mC stacked, 18.0), much larger than published previously. On the basis of comparison with experimental data, we conclude that our values represent the lower boundary of the true stabilization energies. On the basis of error analysis, we expect the present H-bonding energies to be fairly close to the true values, while stacked energies are still expected to be about 10% too low. The stacking energy for the mG...mC pair is considerably lower than the respective H-bonding energy, but it is larger than the mA...mT H-bonding energy. This conclusion could significantly change the present view on the importance of specific H-bonding interactions and nonspecific stacking interactions in nature, for instance, in DNA. Present stabilization energies for H-bonding and stacking energies represent the most accurate and reliable values and can be considered as new reference data.  相似文献   

8.
Theoretical calculations of solvation contribution to hole energy in a polynucleotide chain give very low hole mobility values at zero temperature, μ < 10−3 cm2/(V s). We calculated hole mobility at physiological temperature for the Poly G/Poly C DNA duplex, which gave substantially larger mobility values. Mobility over the temperature range 20–400 K was calculated. Taking stacking interaction into account substantially increased hole mobility.  相似文献   

9.
Molecular models of the complexes between actinomycin D and 14 different DNA hexamers were built based on the X-ray crystal structure of the actinomycin–d(GAAGCTTC)2 complex. The DNA sequences included the canonical GpC binding step flanked by different base pairs, nonclassical binding sites such as GpG and GpT, and sites containing 2,6-diamino- purine. A good correlation was found between the intermolecular interaction energies calculated for the refined complexes and the relative preferences of actinomycin binding to standard and modified DNA. A detailed energy decomposition into van der Waals and electrostatic components for the interactions between the DNA base pairs and either the chromophore or the peptidic part of the antibiotic was performed for each complex. The resulting energy matrix was then subjected to principal component analysis, which showed that actinomycin D discriminates among different DNA sequences by an interplay of hydrogen bonding and stacking interactions. The structure–affinity relationships for this important antitumor drug are thus rationalized and may be used to advantage in the design of novel sequence-specific DNA-binding agents.  相似文献   

10.
Summary Aromatic amino acid residues are often present in carbohydrate-binding sites of proteins. These binding sites are characterized by a placement of a carbohydrate moiety in a stacking orientation to an aromatic ring. This arrangement is an example of CH/π interactions. Ab initio interaction energies for 20 carbohydrate–aromatic complexes taken from 6 selected ultra-high resolution X-ray structures of glycosidases and carbohydrate-binding proteins were calculated. All interaction energies of a pyranose moiety with a side chain of an aromatic residue were calculated as attractive with interaction energy ranging from −2.8 to −12.3 kcal/mol as calculated at the MP2/6-311+G(d) level. Strong attractive interactions were observed for a wide range of orientations of carbohydrate and aromatic ring as present in selected X-ray structures. The most attractive interaction was associated with apparent combination of CH/π interactions and classical H-bonds. The failure of Hartree–Fock method (interaction energies from +1.0 to −6.9 kcal/mol) can be explained by a dispersion nature of a majority of the studied complexes. We also present a comparison of interaction energies calculated at the MP2 level with those calculated using molecular mechanics force fields (OPLS, GROMOS, CSFF/CHARMM, CHEAT/CHARMM, Glycam/AMBER, MM2 and MM3). For a majority of force fields there was a strong correlation with MP2 values. RMSD between MP2 and force field values were 1.0 for CSFF/CHARMM, 1.2 for Glycam/AMBER, 1.2 for GROMOS, 1.3 for MM3, 1.4 for MM2, 1.5 for OPLS and to 2.3 for CHEAT/CHARMM (in kcal/mol). These results show that molecular mechanics approximates interaction energies very well and support an application of molecular mechanics methods in the area of glycochemistry and glycobiology.  相似文献   

11.
Stacking energy of all the 10 unique DNA base‐pair steps (bp step) are calculated using density functional theory within the ultrasoft pseudopotential plane wave method and local density approximation for the exchange‐correlation functional. We have studied the dependence of stacking energy on twist angle, an aspect found difficult to explain using classical theory. We have found that the twist angle for different bp steps at stacking energy minimum matches extremely well with the values of average twist obtained from B‐DNA crystal structure data. This indicates that the use of a proper quantum chemical method to calculate the π‐π electronic interactions may explain stacking energy without incorporating hydrophobic interaction through solvent or effect of backbone through pseudobond. From the twist angle‐dependent stacking energy profile, we have also generated the probability distributions of twist for all the bp steps and calculated the variance of the distribution. Our calculated variances show similar trend to that of the experimental data for which sufficient numbers of data are available. The TA, AT, and CG doublets show large variances among the 10 possible bp steps, indicating their maximum flexibility. This might be the case of unusual deformation observed at the TATA‐box while binding to TBP protein. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

12.
13.
DNA甲基化-非甲基化碱基间堆积作用的理论研究   总被引:1,自引:0,他引:1  
运用二级Mфller-Plesset(MP2)理论方法和cc-pVDZ基组优化了6-甲基鸟嘌呤(O6-MethylG),4-甲基胸腺嘧啶(O4-MethylT)以及5-甲基胞嘧啶(C5-MethylC)与DNA碱基鸟嘌呤(G),腺嘌呤(A),胞嘧啶(C),胸腺嘧啶(T)之间的堆积构型.在MP2/aug-cc-pVXZ//MP2/cc-pVDZ(X=D,T)水平上,采用完全基组外推方法校正了堆积碱基对间的相互作用能,并用完全均衡校正法(CP)校正了基组重叠误差(BSSE).MP2计算结果表明,DNA碱基甲基化使得嘧啶-嘧啶、嘧啶-嘌呤堆积碱基间的平行旋转角发生明显改变,并使堆积碱基间的相互作用能增大.在MP2/cc-pVDZ计算级别上得到了各堆积碱基对的全电子波函数,并用分子中的原子理论(AIM)分析了堆积碱基对间的弱相互作用.AIM分析结果显示,甲基化增强了堆积碱基间的π-π作用,且甲基氢与相邻碱基间形成H2CH…X(X=O,N,CH3,NH2)等类型的氢键.甲基化损伤使碱基间重叠程度增大、π-π作用增强以及堆积碱基间形成多个氢键,是堆积作用能增加的主要原因.  相似文献   

14.
The effect of base sequence on the structure and flexibility of linear single-stranded RNA molecules and the influence of the base sequence on phosphodiester bond reactivity have been studied. Molecular dynamics simulations of 2.1 ns were carried out for nine chimeric oligonucleotides containing only one unsubstituted ribo unit, all the rest of sugars being 2'-O-methylated. The base sequence has recently been reported to make a big contribution to the reactivity of these compounds. A detailed examination of the interaction energies between the base moieties shows that base stacking is strongly context-dependent and cooperative. The strength of stacking at the site susceptible to chain cleavage by intramolecular transesterification was observed to be dependent on both the flanking bases of the cleavage site and those further apart in the molecule. The interaction energies between the bases in the vicinity of the scissile linkage were found to correlate well with the experimental phosphodiester bond cleavage rates: the stronger the bases close to the cleavage site are stacked, the slower the cleavage rate is.  相似文献   

15.
The CCSD(T) interaction energies for the H‐bonded and stacked structures of the uracil dimer are determined at the aug‐cc‐pVDZ and aug‐cc‐pVTZ levels. On the basis of these calculations we can construct the CCSD(T) interaction energies at the complete basis set (CBS) limit. The most accurate energies, based either on direct extrapolation of the CCSD(T) correlation energies obtained with the aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets or on the sum of extrapolated MP2 interaction energies (from aug‐cc‐pVTZ and aug‐cc‐pVQZ basis sets) and extrapolated ΔCCSD(T) correction terms [difference between CCSD(T) and MP2 interaction energies] differ only slightly, which demonstrates the reliability and robustness of both techniques. The latter values, which represent new standards for the H‐bonding and stacking structures of the uracil dimer, differ from the previously published data for the S22 set by a small amount. This suggests that interaction energies of the S22 set are generated with chemical accuracy. The most accurate CCSD(T)/CBS interaction energies are compared with interaction energies obtained from various computational procedures, namely the SCS–MP2 (SCS: spin‐component‐scaled), SCS(MI)–MP2 (MI: molecular interaction), MP3, dispersion‐augmented DFT (DFT–D), M06–2X, and DFT–SAPT (SAPT: symmetry‐adapted perturbation theory) methods. Among these techniques, the best results are obtained with the SCS(MI)–MP2 method. Remarkably good binding energies are also obtained with the DFT–SAPT method. Both DFT techniques tested yield similarly good interaction energies. The large magnitude of the stacking energy for the uracil dimer, compared to that of the benzene dimer, is explained by attractive electrostatic interactions present in the stacked uracil dimer. These interactions force both subsystems to approach each other and the dispersion energy benefits from a shorter intersystem separation.  相似文献   

16.
We have controlled the structure of self-spreading lipid bilayer membranes prepared on surface-oxidized silicon substrates by changing electrolyte concentration. Analysis of the fluorescence intensity, considering the optical interference effect, clarified the stacking structure of the lipid membrane. By varying the electrolyte concentration, we can vary the number of single multilamellar lobes adsorbed on the underlying self-spreading bilayer. This dependence of the stacking ability on the electrolyte concentration was investigated on the basis of changes in the bilayer-lobe interaction energies, including van der Waals, electrostatic double layer, and hydration interaction energies. Theoretical estimation suggests that the observed electrolyte concentration dependence can be explained by the combination of the van der Waals attractive interaction energy and the repulsive double-layer interaction energy.  相似文献   

17.
The stacking interactions in the uracil:phenylalanine (U:PHE) and (U:PHE)···Na+ complexes have been studied at different levels of theory, in which the structures were optimized by both standard and gradient counterpoise corrected methods. The Na+ cation can interact with different sites of stacked U:PHE unit. The geometrical parameters of the optimized structures and the calculated binding energies reveal the influence of cation interaction on π–π stacking and vice versa. The interplay between π–π stacking and cation interaction has also been investigated by topological analysis of electron charge density using atoms in molecules (AIM) method. A good agreement between the results of AIM analysis and calculated binding energies has been observed in dimer and complexes.  相似文献   

18.
CCSD(T)/CBS and DFT methods are employed to study the stacking interactions of acetylacetonate‐type (acac‐type) chelates of nickel, palladium, and platinum with benzene. The strongest chelate–aryl stacking interactions are formed by nickel and palladium chelate, with interaction energies of −5.75 kcal mol−1 and −5.73 kcal mol−1, while the interaction of platinum chelate is weaker, with interaction energy of −5.36 kcal mol−1. These interaction energies are significantly stronger than stacking of two benzenes, −2.73 kcal mol−1. The strongest nickel and palladium chelate–aryl interactions are with benzene center above the metal area, while the strongest platinum chelate–aryl interaction is with the benzene center above the C2 atom of the acac‐type chelate ring. These preferences arise from very different electrostatic potentials above the metal ions, ranging from very positive above nickel to slightly negative above platinum. While the differences in electrostatic potentials above metal atoms cause different geometries with the most stable interaction among the three metals, the dispersion (correlation energy) component is the largest contribution to the total interaction energy for all three metals.  相似文献   

19.
The arene-perfluoroarene stacking interaction was studied by experimental and theoretical methods. A series of compounds with different possibilities for formation of this recognition motif in the solid state were synthesized, and their crystal structures determined by single-crystal X-ray diffraction. The crystal packing of these compounds, as well as the packing of related compounds retrieved from crystallographic databases, were analyzed with quantitative crystal potentials: total lattice energies and the cohesive energies of closest molecular pairs in the crystals were calculated. The arene-perfluoroarene recognition motif emerges as a dominant interaction in the non-hydrogen-bonding compounds studied here, to the point that asymmetric dimers formed over the stacking motif carry over to asymmetric units made of two molecules in the crystal both for pure compounds and for molecular complexes; however, inter-ring distances and angles range from 3.70 to 4.85 A and from 5 to 21 degrees , respectively. Pixel energy partitioning reveals that whenever aromatic rings stack, the largest cohesive energy contribution comes from dispersion, which roughly amounts to 20 kJ mol(-1) per phenyl ring, while the coulombic term is minor but significant enough to make a difference between the arene-arene or perfluoroarene-perfluoroarene interactions on the one hand, and arene-perfluoroarene interactions on the other, whereby the latter are favored by about 10 kJ mol(-1) per phenyl ring. No evidence of special interaction which can be attributed to HF confrontation was recognizable.  相似文献   

20.
G-四链体是富含鸟嘌呤碱基的DNA序列通过氢键相互作用形成的四链螺旋结构. 通过小分子化合物诱导与稳定端粒G-四链体从而抑制端粒酶活性是一种新的抗癌策略. 为了研究一系列吲哚并喹啉衍生物与端粒G-四链体的相互作用, 探究其相互作用模式, 从而为实现基于G-四链体结构的药物合理设计提供依据, 使用分子对接的方法构建了吲哚并喹啉衍生物与G-四链体复合物结构, 在此基础上进行分子动力学模拟, 并使用线性相互作用能(LIE)方法计算了化合物与G-四链体的结合自由能. 结果表明: 化合物与G-四链体的主要相互作用方式由氢键、静电与π-π堆积作用构成, 侧链末端基团类型和侧链的长短是影响相互作用强弱的重要因素. 通过LIE方法计算的结合自由能与实验结果基本吻合, 相关度达到r2=0.79. 并且, 基于预测的结合模式, 总结了拥有更高活性的新型吲哚并喹啉衍生物应具有的几个结构特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号