首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CeCoIn5 is a heavy fermion type-II superconductor showing clear signs of Pauli-limited superconductivity. A variety of measurements give evidence for a transition at high magnetic fields inside the superconducting state, when the field is applied either parallel to or perpendicular to the c axis. When the field is perpendicular to the c axis, antiferromagnetic order develops on the high-field side of the transition. This order remains as the field is rotated out of the basal plane, but the associated moment eventually disappears above 17°, indicating that anomalies seen with the field parallel to the c axis are not related to this magnetic order. We discuss the implications of this finding.  相似文献   

2.
We report specific heat measurements of the heavy fermion superconductor CeCoIn5 in the vicinity of the superconducting critical field H(c2), with magnetic fields in the [110], [100], and [001] directions, and at temperatures down to 50 mK. The superconducting phase transition changes from second to first order for fields above 10 T for H parallel [110] and H parallel [100]. In the same range of magnetic fields, we observe a second specific heat anomaly within the superconducting state. We interpret this anomaly as a signature of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) inhomogeneous superconducting state. We obtain similar results for H parallel [001], with the FFLO state occupying a smaller part of the phase diagram.  相似文献   

3.
We present specific heat and thermal conductivity of the heavy fermion superconductor CeCoIn5 in the vicinity of the superconducting critical fieldH c2, measured with magnetic field in the plane of this quasi-2D compound and at temperatures down to 50 mK. The superconducting phase diagram and the first order nature of the superconducting phase transition at high fields close to a critical fieldH c2 indicate the importance of the Pauli limiting effect in CeCoIn5. In the same range of magnetic field we observe a second specific heat anomaly within the superconducting state, and interpret it as a signature of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) inhomogeneous superconducting state. In addition, the thermal conductivity data as a function of field display a kink at a fieldH k below the superconducting critical field, which closely coincides with the low temperature anomaly in specific heat tentatively identified with the appearance of the FFLO superconducting state. The enhancement of thermal conductivity within the FFLO state calls for further theoretical investigations of the real space structure of the order parameter (and in particular, the structure of vortices) and of the thermal transport within the inhomogeneous FFLO state.  相似文献   

4.
5.
We present (115)In NMR measurements in a novel thermodynamic phase of CeCoIn(5) in a high magnetic field, where exotic superconductivity exists with the incommensurate spin-density wave order. We show that the NMR spectra in this phase provide direct evidence for the emergence of the spatially distributed normal quasiparticle regions. The quantitative analysis for the field evolution of the paramagnetic magnetization and newly emerged low-energy quasiparticle density of states is consistent with the nodal plane formation, which is characterized by an order parameter in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. The NMR spectra also suggest that the spatially uniform spin-density wave is induced in the FFLO phase.  相似文献   

6.
We show results on the vortex core dissipation through current-voltage measurements under applied pressure and magnetic field in the superconducting phase of CeCoIn{5}. We find that as soon as the system becomes superconducting, the vortex core resistivity increases sharply as the temperature and magnetic field decrease. The sharp increase in flux-flow resistivity is due to quasiparticle scattering on critical antiferromagnetic fluctuations. The strength of magnetic fluctuations below the superconducting transition suggests that magnetism is complementary to superconductivity and therefore must be considered in order to fully account for the low-temperature properties of CeCoIn{5}.  相似文献   

7.
In contrast to substitution on the Co or Ce site, Sn substitution has a remarkably strong effect on superconductivity in CeCoIn5-xSnx, with Tc-->0 beyond only 3.6% Sn. Instead of being randomly distributed on in-plane and out-of-plane In sites, extended x-ray absorption fine structure measurements show the Sn atoms preferentially substitute within the Ce-In plane. This result highlights the importance of the In1 site to impurity scattering and clearly demonstrates the two-dimensional nature of superconductivity in CeCoIn5.  相似文献   

8.
Quantum phase transitions in Mott insulators do not fit easily into the Landau-Ginzburg-Wilson paradigm. A recently proposed alternative to it is the so-called deconfined quantum criticality scenario, providing a new paradigm for quantum phase transitions. In this context it has recently been proposed that a second-order phase transition would occur in a two-dimensional spin 1/2 quantum antiferromagnet in the deep easy-plane limit. A check of this conjecture is important for understanding the phase structure of Mott insulators. To this end we have performed large-scale Monte Carlo simulations on an effective gauge theory for this system, including a Berry-phase term that projects out the S=1/2 sector. The result is a first-order phase transition, thus contradicting the conjecture.  相似文献   

9.
《Physics letters. [Part B]》1987,188(3):353-358
The chiral phase transition in lattice QCD has been studied for light fermions of mass ma=0.025 on lattices of size 44 and 83×4 using the hybrid algorithm. We find evidence for a first-order chiral phase transition with a large latent heat. A comparison with 103×6 data shows violations of asymptotic scaling for Tch which are similar in magnitude to those observed in the pure gauge sector.  相似文献   

10.
We address the issue of how triplet superconductivity emerges in an electronic system near a ferromagnetic quantum critical point (FQCP). Previous studies found that the superconducting transition is of second order, and T(c) is strongly reduced near the FQCP due to pair-breaking effects from thermal spin fluctuations. In contrast, we demonstrate that near the FQCP, the system avoids pair-breaking effects by undergoing a first order transition at a much larger T(c). A second order superconducting transition emerges only at some distance from the FQCP.  相似文献   

11.
We study the mean-field static solution of the Blume-Emery-Griffiths-Capel model with quenched disorder, an Ising-spin lattice gas with random magnetic interaction. The thermodynamics is worked out in the full replica symmetry breaking scheme. The model exhibits a high temperature/low density paramagnetic phase. As temperature decreases or density increases, a phase transition to a full replica symmetry breaking spin-glass phase occurs. The nature of the transition can be either of the second order or, at temperature below a given critical value, of the first order in the Ehrenfest sense, with a discontinuous jump of the order parameter, a latent heat, and coexistence of phases.  相似文献   

12.
The theory of first-order phase transitions in systems where the direct formation of nuclei of a new phase is inhibited for any reason, for example, because of the extremely high elastic energy, has been constructed using the example of the silicon-silicon carbide phase transition due to the chemical reaction with carbon monoxide. It has been shown that, in this case, the phase transition occurs through an intermediate state, which significantly promotes the formation of new-phase nuclei. For the silicon-silicon carbide phase transition, such an intermediate state is the “pre-carbide” state of silicon saturated with dilatation dipoles, i.e., pairs formed by a carbon atom and a silicon vacancy that are strongly attracted to each other. The model dependence of the potential energy of systems with an intermediate phase on the reaction coordinates has been investigated. The kinetics of transformation of the intermediate state into a new phase has been described.  相似文献   

13.
Detailed Mössbauer spectra of57Fe in the iron storage protein, ferritin, in the temperature range between 250 and 280 K reveal a first-order phase transition with a thermal hysteresis loop of 7 K width. While the temperature is raised from 90 K to 271 K, Mössbauer spectra composed of a narrow line quadrupole doublet, typical for solids, are observed. Above this temperature, each spectrum is composed of the narrow line subspectrum and a broad line subspectrum whose relative intensity increases with temperature. The intensity of the narrow line subspectrum decreases by a factor of five at the critical temperature and thus shows a large increase in the mean square displacements atT up=271 K. While decreasing the temperature, the bounded diffusive motions, expressed in the spectra by the coexistence of the narrow and broad lines, survive down toT down=264 K, where again the spectral shapes and areas undergo a discontinuous jump. The narrow line subspectrum increases in intensity and the broad line subspectrum disappears. These phenomena may be understood in terms of supercooling of the water in the free channels and in the cavity of the ferritin molecule.  相似文献   

14.
15.
We show that the recently observed spin resonance modes in heavy-fermion superconductors CeCoIn5 and CeCu2Si2 are magnetic excitons originating from superconducting quasiparticles. The wave vector Q of the resonance state leads to a powerful criterion for the symmetry and node positions of the unconventional gap function. The detailed analysis of the superconducting feedback on magnetic excitations reveals that the symmetry of the superconducting gap corresponds to a singlet d_{x;{2}-y;{2}} state symmetry in both compounds. In particular this resolves the long-standing ambiguity of the gap symmetry in CeCoIn5. We demonstrate that in both superconductors the resonance peak shows a significant dispersion away from Q which can be checked experimentally. Our analysis reveals the similar origin of the resonance peaks in the two heavy-fermion superconductors and in layered cuprates.  相似文献   

16.
The Ginzburg-Landau-Wilson theory that describes the disordered-metal- d-wave-superconductor phase transition at zero temperature is derived at weak coupling. The theory represents an interacting dissipative system of bosonic Cooper pairs in an effective random potential. I show that there exists a wide crossover regime in the theory controlled by a line of Gaussian fixed points, each of which in two dimensions is characterized by a different universal value of the dc critical conductivity. Relation to experiments on overdoped and underdoped cuprates is discussed.  相似文献   

17.
Thin superconducting films of CeCoIn5 were prepared in situ by simultaneous thermal evaporation of indium and dc magnetic field assisted sputtering of planar metallic Ce and Co targets. To achieve an effective sputtering of the magnetic Co target a special geometry with two facing planar targets (Ce and Co) and magnetic field perpendicular to the targets was used. The stoichiometric (0 0 1)-oriented CeCoIn5 films were grown on r-cut sapphire substrates with a high-rate of 100 nm/min. The temperature dependence of the electrical resistivity revealed the characteristic heavy-fermion behavior and a superconducting transition at about 2 K in agreement with the literature data for CeCoIn5 bulk material and thin films.  相似文献   

18.
19.
Yuji Matsuda 《Pramana》2006,66(1):239-246
In recently discovered heavy fermion compounds, quasi-two-dimensional CeCoIn5 and skutterudite PrOs4Sb12, multiple superconducting phases with different symmetries manifest themselves belowT c. The angle-resolved magnetothermal transport measurements revealed that in PrOs4Sb12 a novel change in the symmetry of the superconducting gap function occurs deep inside the superconducting state. The ultrasound velocity measurements revealed that in CeCoIn5 the Fulde-Ferrel-Larkin-Ovchinikov (FFLO) phase, in which the order parameter is spatially modulated and has planar nodes aligned perpendicular to the vortices, appears at low temperature and high field. These results open up a new realm for the study of the superconductivity with multiple phases.  相似文献   

20.
We present a 115In NMR study of the quasi-two-dimensional heavy-fermion superconductor CeCoIn5 believed to host a Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state. In the vicinity of the upper critical field and with a magnetic field applied parallel to the ab plane, the NMR spectrum exhibits a dramatic change below T*(H) which well coincides with the position of reported anomalies in specific heat and ultrasound velocity. We argue that our results provide the first microscopic evidence for the occurrence of a spatially modulated superconducting order parameter expected in a FFLO state. The NMR spectrum also implies an anomalous electronic structure of vortex cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号