首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Letf(X; T 1, ...,T n) be an irreducible polynomial overQ. LetB be the set ofb teZ n such thatf(X;b) is of lesser degree or reducible overQ. Let ?={F j}{F j } j?1 be a Følner sequence inZ n — that is, a sequence of finite nonempty subsetsF j ?Z n such that for eachvteZ n , $\mathop {lim}\limits_{j \to \infty } \frac{{\left| {F_j \cap (F_j + \upsilon )} \right|}}{{\left| {F_j } \right|}} = 1$ Suppose ? satisfies the extra condition that forW a properQ-subvariety ofP n ?A n and ?>0, there is a neighborhoodU ofW(R) in the real topology such that $\mathop {lim sup}\limits_{j \to \infty } \frac{{\left| {F_j \cap U} \right|}}{{\left| {F_j } \right|}}< \varepsilon $ whereZ n is identified withA n (Z). We prove $\mathop {lim}\limits_{j \to \infty } \frac{{\left| {F_j \cap B} \right|}}{{\left| {F_j } \right|}} = 0$ .  相似文献   

2.
For each n?≥ 2, let A n ?=?(ξ ij ) be an nn symmetric matrix with diagonal entries equal to zero and the entries in the upper triangular part being independent with mean?μ n and standard deviation σ n . The Laplacian matrix is defined by ${{\bf \Delta}_n={\rm diag}(\sum_{j=1}^n\xi_{ij})_{1\leq i \leq n}-{\bf A}_n}$ . In this paper, we obtain the laws of large numbers for λ nk (Δ n ), the (k?+?1)-th smallest eigenvalue of Δ n , through the study of the order statistics of weakly dependent random variables. Under certain moment conditions on ξ ij ’s, we prove that, as n → ∞, $$({\rm i})\quad\frac{\lambda_{n-k}({\bf \Delta}_n)-n\mu_n} {\sigma_n\sqrt{n\log n}} \to -\sqrt{2} \quad a.s. $$ for any k?≥ 1. Further, if {Δ n ; n?≥ 2} are independent with?μ n ?=?0 and σ n ?=?1, then, (ii) the sequence ${\;\left\{\frac{\lambda_{n-k}({\bf \Delta}_n)}{\sqrt{n\log n}};n\geq 2\right\}}$ is dense in ${\left[-\sqrt{2+2(k+1)^{-1}}, -\sqrt{2}\,\right]\ a.s.}$ for any k ≥ 0. In particular, (i) holds for the Erd?s–Rényi random graphs. Similar results are also obtained for the largest eigenvalues of Δ n .  相似文献   

3.
This paper is concerned with the Cauchy problem for the Keller–Segel system $$\left\{\begin{array}{l@{\quad}l}u_t = \nabla \cdot (\nabla u - u \nabla v) & \hbox{in } {\bf R}^{2} \times(0,\infty),\\v_t = \Delta v - \lambda v + u & \hbox{ in } {\bf R}^2 \times(0,\infty),\\u(x,0) = u_0 (x) \geq 0, \; v(x,0) = v_0 (x) \geq 0 & \hbox{ in} {\bf R}^2\end{array}\right.$$ with a constant λ ≥ 0, where ${(u_0, v_0) \in (L^1 ({\bf R}^2) \cap L^\infty ({\bf R}^2) ) \times (L^1 ({\bf R}^2) \cap H^1 ({\bf R}^2))}$ . Let $$m (u_0;{\bf R}^2) = \int\limits_{{\bf R}^2} u_0 (x) dx$$ . The same method as in [9] yields the existence of a blowup solution with m (u 0; R 2) > 8π. On the other hand, it was recently shown in [7] that under additional hypotheses ${u_0 \log (1 + |x|^2) \in L^1 ({\bf R}^2)}$ and ${u_0 \log u_0 \in L^1 ({\bf R}^2)}$ , any solution with m(u 0; R 2) < 8π exists globally in time. In[18], the extra assumptions were taken off, but the condition on mass was restricted to m (u 0; R 2) < 4π. In this paper, we prove that any solution with m (u 0; R 2) < 8π exists globally in time under no extra conditions. Furthermore the global existence of solutions is obtained under some condition on u 0 also in the critical case m (u 0; R 2) = 8π.  相似文献   

4.
Most of the methods for convergence acceleration of continued fractions K(a m /b m ) are based on the use of modified approximants S m (ω m ) in place of the classical ones S m (0), where ω m are close to the tails f (m) of the continued fraction. Recently (Nowak, Numer Algorithms 41(3):297–317, 2006), the author proposed an iterative method producing tail approximations whose asymptotic expansion accuracies are being improved in each step. This method can be successfully applied to a convergent continued fraction K(a m /b m ), where $a_m = \alpha_{-2} m^2 + \alpha_{-1} m + \ldots$ , b m ?=?β ???1 m?+?β 0?+?... (α ???2?≠?0, $|\beta_{-1}|^2+|\beta_{0}|^2\neq 0$ , i.e. $\deg a_m=2$ , $\deg b_m\in\{0,1\}$ ). The purpose of this paper is to extend this idea to the class of two-variant continued fractions K (a n /b n ?+?a n ′/b n ′) with a n , a n ′, b n , b n ′ being rational in n and $\deg a_n=\deg a_n'$ , $\deg b_n=\deg b_n'$ . We give examples involving continued fraction expansions of some elementary and special mathematical functions.  相似文献   

5.
Models of spatially homogeneous walks in the quarter plane $\mathbf{ Z}_{+}^{2}$ with steps taken from a subset $\mathcal{S}$ of the set of jumps to the eight nearest neighbors are considered. The generating function (x,y,z)?Q(x,y;z) of the numbers q(i,j;n) of such walks starting at the origin and ending at $(i,j) \in\mathbf{ Z}_{+}^{2}$ after n steps is studied. For all non-singular models of walks, the functions x?Q(x,0;z) and y?Q(0,y;z) are continued as multi-valued functions on C having infinitely many meromorphic branches, of which the set of poles is identified. The nature of these functions is derived from this result: namely, for all the 51 walks which admit a certain infinite group of birational transformations of C 2, the interval $]0,1/|\mathcal{S}|[$ of variation of z splits into two dense subsets such that the functions x?Q(x,0;z) and y?Q(0,y;z) are shown to be holonomic for any z from the one of them and non-holonomic for any z from the other. This entails the non-holonomy of (x,y,z)?Q(x,y;z), and therefore proves a conjecture of Bousquet-Mélou and Mishna in Contemp. Math. 520:1?C40 (2010).  相似文献   

6.
Let ${x: M^{m} \rightarrow \mathbb{S}^{m+1}}$ be an m-dimensional umbilic-free hypersurface in an (m?+?1)-dimensional unit sphere ${\mathbb{S}^{m+1}}$ , with standard metric I?= dx · dx. Let II be the second fundamental form of isometric immersion x. Define the positive function ${\rho=\sqrt{\frac{m}{m-1}}\|II-\frac{1}{m}tr(II)I\|}$ . Then positive definite (0,2) tensor ${\mathbf{g}=\rho^{2}I}$ is invariant under conformal transformations of ${\mathbb{S}^{m+1}}$ and is called M?bius metric. The curvature induced by the metric g is called M?bius curvature. The purpose of this paper is to classify the hypersurfaces with constant M?bius curvature.  相似文献   

7.
Konrad Engel 《Combinatorica》1984,4(2-3):133-140
LetP be that partially ordered set whose elements are vectors x=(x 1, ...,x n ) withx i ε {0, ...,k} (i=1, ...,n) and in which the order is given byxy iffx i =y i orx i =0 for alli. LetN i (P)={x εP : |{j:x j ≠ 0}|=i}. A subsetF ofP is called an Erdös-Ko-Rado family, if for allx, y εF it holdsxy, x ≯ y, and there exists az εN 1(P) such thatzx andzy. Let ? be the set of all vectorsf=(f 0, ...,f n ) for which there is an Erdös-Ko-Rado familyF inP such that |N i (P) ∩F|=f i (i=0, ...,n) and let 〈?〉 be its convex closure in the (n+1)-dimensional Euclidean space. It is proved that fork≧2 (0, ..., 0) and \(\left( {0,...,0,\overbrace {i - component}^{\left( {\begin{array}{*{20}c} {n - 1} \\ {i - 1} \\ \end{array} } \right)}k^{i - 1} ,0,...,0} \right)\) (i=1, ...,n) are the vertices of 〈?〉.  相似文献   

8.
Let T be a bijective map on ? n such that both T and T ???1 are Borel measurable. For any θ?∈?? n and any real n ×n positive definite matrix Σ, let N (θ, Σ) denote the n-variate normal (Gaussian) probability measure on ? n with mean vector θ and covariance matrix Σ. Here we prove the following two results: (1) Suppose $N(\boldsymbol{\theta}_j, I)T^{-1}$ is gaussian for 0?≤?j?≤?n, where I is the identity matrix and {θ j ???θ 0, 1?≤?j?≤?n } is a basis for ? n . Then T is an affine linear transformation; (2) Let $\Sigma_j = I + \varepsilon_j \mathbf{u}_j \mathbf{u}_j^{\prime},$ 1?≤?j?≤?n where ε j ?>???1 for every j and {u j , 1?≤?j?≤?n } is a basis of unit vectors in ? n with $\mathbf{u}_j^{\prime}$ denoting the transpose of the column vector u j . Suppose N(0, I)T ???1 and $N (\mathbf{0}, \Sigma_j)T^{-1},$ 1?≤?j?≤?n are gaussian. Then $T(\mathbf{x}) = \sum\nolimits_{\mathbf{s}} 1_{E_{\mathbf{s}}}(\mathbf{x}) V \mathbf{s} U \mathbf{x}$ a.e. x, where s runs over the set of 2 n diagonal matrices of order n with diagonal entries ±1, U, V are n ×n orthogonal matrices and { E s } is a collection of 2 n Borel subsets of ? n such that { E s } and {V s U (E s )} are partitions of ? n modulo Lebesgue-null sets and for every j, $V \mathbf{s} U \Sigma_j (V \mathbf{s} U)^{-1}$ is independent of all s for which the Lebesgue measure of E s is positive. The converse of this result also holds. Our results constitute a sharpening of the results of Nabeya and Kariya (J. Multivariate Anal. 20 (1986) 251–264) and part of Khatri (Sankhyā Ser. A 49 (1987) 395–404).  相似文献   

9.
Let λ f(n) be the n-th normalized Fourier coefficient of a holomorphic Hecke eigenform f(z)∈Sk(Γ).In this paper,we established nontrivial estimates for ∑n≤xλf(ni)λf(nj),where 1 ≤ i j ≤ 4.  相似文献   

10.
We consider the problem of searching for a best LAD-solution of an overdetermined system of linear equations Xa=z, X∈?m×n, mn, \(\mathbf{a}\in \mathbb{R}^{n}, \mathbf {z}\in\mathbb{R}^{m}\). This problem is equivalent to the problem of determining a best LAD-hyperplane x?a T x, x∈? n on the basis of given data \((\mathbf{x}_{i},z_{i}), \mathbf{x}_{i}= (x_{1}^{(i)},\ldots,x_{n}^{(i)})^{T}\in \mathbb{R}^{n}, z_{i}\in\mathbb{R}, i=1,\ldots,m\), whereby the minimizing functional is of the form
$F(\mathbf{a})=\|\mathbf{z}-\mathbf{Xa}\|_1=\sum_{i=1}^m|z_i-\mathbf {a}^T\mathbf{x}_i|.$
An iterative procedure is constructed as a sequence of weighted median problems, which gives the solution in finitely many steps. A criterion of optimality follows from the fact that the minimizing functional F is convex, and therefore the point a ?∈? n is the point of a global minimum of the functional F if and only if 0?F(a ?).
Motivation for the construction of the algorithm was found in a geometrically visible algorithm for determining a best LAD-plane (x,y)?αx+βy, passing through the origin of the coordinate system, on the basis of the data (x i ,y i ,z i ),i=1,…,m.  相似文献   

11.
Let {x m } be a vector sequence that satisfies
$$\boldsymbol{x}_{m}\sim \boldsymbol{s}+\sum\limits^{\infty}_{i=1}\alpha_{i} \boldsymbol{g}_{i}(m)\quad\text{as \(m\to\infty\)}, $$
s being the limit or antilimit of {x m } and \(\{\boldsymbol {g}_{i}(m)\}^{\infty }_{i=1}\) being an asymptotic scale as m, in the sense that
$$\lim\limits_{m\to\infty}\frac{\|\boldsymbol{g}_{i+1}(m)\|}{\|\boldsymbol{g}_{i}(m)\|}=0,\quad i=1,2,\ldots. $$
The vector sequences \(\{\boldsymbol {g}_{i}(m)\}^{\infty }_{m=0}\), i = 1, 2,…, are known, as well as {x m }. In this work, we analyze the convergence and convergence acceleration properties of a vectorized version of the generalized Richardson extrapolation process that is defined via the equations
$$\sum\limits^{k}_{i=1}\langle\boldsymbol{y},{\Delta}\boldsymbol{g}_{i}(m)\rangle\widetilde{\alpha}_{i}=\langle\boldsymbol{y},{\Delta}\boldsymbol{x}_{m}\rangle,\quad n\leq m\leq n+k-1;\quad \boldsymbol{s}_{n,k}=\boldsymbol{x}_{n}+\sum\limits^{k}_{i=1}\widetilde{\alpha}_{i}\boldsymbol{g}_{i}(n), $$
s n, k being the approximation to s. Here, y is some nonzero vector, 〈? ,?〉 is an inner product, such that \(\langle \alpha \boldsymbol {a},\beta \boldsymbol {b}\rangle =\overline {\alpha }\beta \langle \boldsymbol {a},\boldsymbol {b}\rangle \), and Δx m = x m + 1? x m and Δg i (m) = g i (m + 1)?g i (m). By imposing a minimal number of reasonable additional conditions on the g i (m), we show that the error s n, k ? s has a full asymptotic expansion as n. We also show that actual convergence acceleration takes place, and we provide a complete classification of it.
  相似文献   

12.
The author considers $$f(z) = \exp (g(z)) = \sum\limits_{j = 0}^\infty {a_j z^j ,}$$ , whereg(z) is a real, entire, transcendental function admissible in the sense of W. K. Hayman [(1956): Reine Angew. Math.,196:67-95]. The aim of the paper is to study, asm→+∞, the distribution of the zeros of the partial sums $$s_m (z) = \sum\limits_{j = 0}^m {a_j z^j .}$$ The results are stated in terms of Hayman's auxiliary functions Ifr>0 is large enough, botha(r) andb(r) are positive,a(r) is strictly increasing, and $$a(r) \to + \infty ,b(r) \to + \infty (r \to + \infty ).$$ Define the sequence (R m ) (m>m 0) by the relationsa(R m )=m. From the following proposition, typical of those stated in the paper, it is easy to deduce accurate information regarding those zeros ofs m (z) that lie near the positive axis: Letζ be an auxiliary complex variable; then asm→+∞, and forR=R m , the functions $$\left\{ {1 + \zeta \left( {\frac{2}{{b(R)}}} \right)^{1/2} } \right\}^{ - m} \{ f(R)\} ^{ - 1} s_m \left( {R\left( {1 + \zeta \left( {\frac{2}{{b(R)}}} \right)^{1/2} } \right)} \right)$$ tend to $$\frac{1}{2}e^{\zeta ^2 } \left( {1 - \frac{2}{{\sqrt \pi }}\int_0^\zeta {e^{ - \sigma ^2 } d\sigma } } \right)$$ uniformly on every compact subset of theζ-plane. There are similar, equally precise, results covering those zeros ofs m (z) that lie near any rayte i?(0<t<+∞,?≠0).  相似文献   

13.
Let f(z) be a holomorphic Hecke eigencuspform of weight k for the full modular group. Let ?? f (n) be the nth normalized Fourier coefficient of f(z). Suppose that L(sym2 f, s) is the symmetric square L-function associated with f(z), and $ \lambda _{sym^2 f} (n) $ (n) denotes the nth coefficient L(sym2 f, s). In this paper, it is proved that $$ \sum\limits_{n \leqslant x} {\lambda _{sym^2 f}^4 (n)} = xP2(\log x) + O(x^{\frac{{79}} {{81}} + \varepsilon } ), $$ , where P 2(t) is a polynomial in t of degree 2. Similarly, it is obtained that $$ \sum\limits_{n \leqslant x} {\lambda _f^4 (n^2 )} = x\tilde P2(\log x) + O(x^{\frac{{79}} {{81}} + \varepsilon } ), $$ , where $ \tilde P_2 (t) $ is a polynomial in t of degree 2.  相似文献   

14.
A parametric family of operators G ρ is constructed for the class of convolutions W p,m (K) whose kernel K was generated by the moment sequence. We obtain a formula for evaluating $E(W_{p,m} (K);G_\rho )_p : = \mathop {\sup }\limits_{f \in W_{p,m} (K)} \left\| {f - G_\rho (f)} \right\|_p .$ . For the case in which W p,m (K)=W r,β p,m , we obtain an expansion in powers of the parameter ?=?ln ρ for E(W p,m r,β ; G ρ,r ) p , where β ∈ ?, γ > 0, and m ∈ ?, while p = 1 or p = .  相似文献   

15.
LetW(x) be a function that is nonnegative inR, positive on a set of positive measure, and such that all power moments ofW 2 (x) are finite. Let {p n (W 2;x)} 0 denote the sequence of orthonormal polynomials with respect to the weightW 2, and let {α n } 1 and {β n } 1 denote the coefficients in the recurrence relation $$xp_n (W^2 ,x) = \alpha _{n + 1} p_{n + 1} (W^2 ,x) + \beta _n p_n (W^2 ,x) + \alpha _n p_{n - 1} (W^2 ,x).$$ We obtain a sufficient condition, involving mean approximation ofW ?1 by reciprocals of polynomials, for $$\mathop {\lim }\limits_{n \to \infty } {{\alpha _n } \mathord{\left/ {\vphantom {{\alpha _n } {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }} = \tfrac{1}{2}and\mathop {\lim }\limits_{n \to \infty } {{\beta _n } \mathord{\left/ {\vphantom {{\beta _n } {c_{n + 1} }}} \right. \kern-\nulldelimiterspace} {c_{n + 1} }} = 0,$$ wherec n 1 is a certain increasing sequence of positive numbers. In particular, we obtain a sufficient condition for Freud's conjecture associated with weights onR.  相似文献   

16.
Let \(f(z): = \sum\nolimits_{j = 0}^\infty {a_j z^J } \) be entire, witha j≠0,j large enough, \(\lim _{J \to \infty } a_{j + 1} /a_J = 0\) , and, for someqC, \(q_j : = a_{j - 1} a_{j + 1} /a_j^2 \to q\) asj→∞. LetE mn(f; r) denote the error in best rational approximation off in the uniform norm on |z‖≤r, by rational functions of type (m, n). We study the behavior ofE mn(f; r) asm and/orn→∞. For example, whenq above is not a root of unity, or whenq is a root of unity, butq m has a certain asymptotic expansion asm→∞, then we show that, for each fixed positive integern, ,m→∞. In particular, this applies to the Mittag-Leffler functions \(f(z): = \sum\nolimits_{j = 0}^\infty {z^j /\Gamma (1 + j/\lambda )} \) and to \(f(z): = \sum\nolimits_{j = 0}^\infty {z^j /(j!)^{I/\lambda } } \) , λ>0. When |q‖<1, we also handle the diagonal case, showing, for example, that ,n→∞. Under mild additional conditions, we show that we can replace 1+0(1) n by 1+0(1). In all cases we show that the poles of the best approximants approach ∞ asm→∞.  相似文献   

17.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

18.
For any rational functions with complex coefficients A(z),B(z), and C(z), where A(z), C(z) are not identically zero, we consider the sequence of rational functions H m (z) with generating function ∑H m (z)t m =1/(A(z)t 2+B(z)t+C(z)). We provide an explicit formula for the limiting pair correlation function of the roots of $\prod_{m=0}^{n}H_{m}(z)$ , as n→∞, counting multiplicities, on certain closed subarcs J of a curve $\mathcal{C}$ where the roots lie. We give an example where the limiting pair correlation function does not exist if J contains the endpoints of $\mathcal{C}$ .  相似文献   

19.
We study the quasi-periodic Schrödinger equation $$-\psi''(x) + V(x) \psi(x) = E \psi(x), \quad x \in{ \mathbf {R}} $$ in the regime of “small” V. Let $(E_{m}',E''_{m})$ , mZ ν , be the standard labeled gaps in the spectrum. Our main result says that if $E''_{m} - E'_{m} \le\varepsilon\exp(-\kappa_{0} |m|)$ for all mZ ν , with ε being small enough, depending on κ 0>0 and the frequency vector involved, then the Fourier coefficients of V obey $|c(m)| \le \varepsilon^{1/2} \exp(-\frac{\kappa_{0}}{2} |m|)$ for all mZ ν . On the other hand we prove that if |c(m)|≤εexp(?κ 0|m|) with ε being small enough, depending on κ 0>0 and the frequency vector involved, then $E''_{m} - E'_{m} \le2 \varepsilon\exp(-\frac {\kappa_{0}}{2} |m|)$ .  相似文献   

20.
Jachymski showed that the set $$\left\{ {(x,y) \in {{\rm{c}}_0} \times {{\rm{c}}_0}:\left( {\sum\limits_{i = 1}^n {\alpha (i)x(i)y(i)} } \right)_{n = 1}^\infty {\rm{ is bounded}}} \right\}$$ is either a meager subset of c 0 × c 0 or is equal to c 0 × c 0. In the paper we generalize this result by considering more general spaces than c 0, namely C 0(X), the space of all continuous functions which vanish at infinity, and C b (X), the space of all continuous bounded functions. Moreover, we replace the meagerness by σ-porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号