首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-temperature synthetic pathways can result in crystallization of metastable materials. These methods have been widely explored for the preparation of metal oxides. Adaptation of nonhydrolytic sol-gel chemistry to non-oxide systems offers an elegant route to transition-metal sulfides. The method can be exploited for the facile and reproducible synthesis of iron sulfide crystallizing in the troilite structure. This phase is only found in meteorites and planets and has previously been obtained by high-temperature or high-energy ball-milling methods. "Nonhydrolytic" sol-gel processing results in direct crystallization of troilite with no need for further calcination.  相似文献   

2.
The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the resultant potential applications for the degradation of volatile organic compounds(VOCs). The structure-activity relationships have been well-studied and used to facilitate design of the structure and composition of highly active catalysts. Recently, non-noble metal oxides with porous structures have been used as catalysts for deep oxidation of VOCs, such as aromatic hydrocarbons, aliphatic compounds, aldehydes, and alcohols, with comparable activities to their noble metal counterparts. This review summarizes the growing literature regarding the use of porous metal oxides for the catalytic removal of VOCs, with emphasis on design of the composition and structure and typical synthetic technologies.  相似文献   

3.
This work is focused on the synthesis of bimetallic oxide prepared by non-hydrolytic sol–gel method using the chemie douce approach. The bimetallic oxide was characterized by using various analytical techniques. Elemental analysis showed consistency with the formulation. From XRD, SEM and TEM studies, it is concluded that precursor chemistry has a significant effects on the surface chemistry of metal oxide on calcinations and as well as synthetic routes. XRD patterns show that an enhanced homogeneity on calcinations. Use of these metal oxides has commercial importance in future for sensor devices.  相似文献   

4.
环钯化合物由于丰富的结构、高度的稳定性和卓越的催化性能,已成为钯化学研究的热点之一。迄今已开发出了C-H键活化、氧化加成、转金属化、亲核加成和配体交换等多种方法,可制备出从三元环到十一元环的CY型环钯化合物和多种YCY型环钯化合物。环钯化合物目前已应用于偶联、烯烃氢化和不对称催化等反应中。本文简单介绍了环钯化合物的种类,重点介绍了环钯化合物的合成方法和催化应用情况,最后提出了环钯化合物在今后合成研究和催化应用中的发展建议。  相似文献   

5.
Complex multi-element lead structures of mixed metal oxides that may be identified as hits during high throughput experimentation (HTE) campaigns, can be deconvoluted retrospectively on the basis of simple binary and ternary oxides as illustrated in the current example of a hit found in an ammoxidation reaction. On the basis of the performance of the simple binary and ternary mixed metal oxides structure property relationships can be established, that give insight into the roles of the different components of the complex mixed metal oxides and may also help in establishing a reaction mechanism and converting the hit into a development candidate.  相似文献   

6.
Mesoporous metal oxides (CeO(2-δ))-YSZ have been synthesized by a versatile direct synthesis method using ionic cetyltrimethylammonium bromide (CTAB) and different nonionic (block copolymers) as surfactants and urea as hydrolyzing agent. The synthesis was realized at pH=9 using tetraethylammonium hydroxide (TEAOH) as pH mediator. Calcination at 550 °C led to the formation of crystalline metal oxides with uniform mesoporosity. The obtained materials have been characterized by thermogravimetric analysis (TG-DTG), wide and small-angle X-ray diffraction (XRD), Raman spectroscopy, Brunauer, Emmett and Teller (BET) surface area analysis, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All the obtained materials exhibits mesoporous structure, crystalline structure indexed in a cubic symmetry, showing a high surface area, a uniform and narrow pore size distribution, spherical morphology typical for the mesoporous materials. The crystalline and mesoporous structures, surface chemistry and stoichiometry for the samples synthesized using ionic and nonionic surfactants have been discussed.  相似文献   

7.
The use of mixed oxides is a well-appreciated approach in the fields of material science and synthesis, due to remarkable tunable surface properties such as acidic and basic characteristics, oxidation/reduction capabilities, and high agility of lattice oxygen, which makes them ideal choices as heterogeneous catalysts. The activity of the mixed oxides broadly relies on the nature of support and active material used and on the preparation method, calcination temperatures. Wide range of techniques for preparation of mixed oxide materials are adoptable, viz. sol-gel, co-precipitation, wet impregnation, microwave irradiation and hydrothermal methods. Use of mixed oxides as solid catalysts have gained popularity in many valued organic transformations, via alkylation, oxidation, condensation, dehydration, dehydrogenation, cycloaddition and isomerization. Application of mixed oxides in the area of green organic synthesis is a valuable strategy, which contributed significantly to the design of many novel heterocyclic scaffolds. The chemistry of N-heterocycle scaffolds, which generally possess five and six membered rings, is an interesting area for both synthetic and medicinal chemistry research constituting over 60% organics used in various arenas. The position and number of nitrogen atoms in the rings, distinguish them as pyrroles, pyrazoles, imidazoles, triazoles, pyridines and pyramidines classes. In this review, we focus on the scope, importance and versatile applications of mixed metal oxides and their synergetic effects as heterogeneous catalysts in the synthesis of variety of N-heterocyclic derivatives. The scientific aspects of the mixed oxides as catalytic active materials to design efficient synthetic protocols for the organic transformations is also discussed.  相似文献   

8.
9.
Recent advancement on the redox properties of a selection of transition metal complexes of the azoaromatic ligands: bidentate L(1) [2-(arylazo)pyridine] and tridentate HL(2) [2-(aminoarylphenylazo)pyridine] are described and compared. Due to the presence of a low lying azo-centered π*-orbital, these azoaromatic ligands may exist in multiple valent states. The coordination chemistry of the L(1) ligands was thoroughly studied during the 1980s. These complexes undergo facile reduction in solution at low accessible potentials. One electron reduced azo-complexes, though known for a long time to occur in solution, have only recently been isolated in a crystalline state. New synthetic protocols for the synthesis of metal-bound azo-radical complexes have been developed. Low-valent metal complexes such as metal carbonyls have been found to be excellent starting materials for this purpose. In a few selected cases, syntheses of these complexes were also achieved from very high valent metal oxides using triphenylphosphine as both a reducing and oxo-abstracting agent. Issues related to the ambiguities of the electronic structures in the azo-metal complexes have been discussed considering bond parameters, redox and spectral properties. Unusual redox events such as RIET (Redox-Induced Electron Transfer) phenomena in a few systems have been elaborated and compared with the known example. Novel examples of N=N bond cleavage reactions via four-electron reduction and subsequent C-N bond formation in metal-bound coordinated ligands have been noted.  相似文献   

10.
Despite recent exciting progress in catalysis by supported gold nanoparticles, there remains the formidable challenge of preparing supported gold catalysts that collectively incorporate precise control over factors such as size and size-distribution of the gold nanoparticles, homogeneous dispersion of the particles on the support, and the ability to utilize a wide range of supports that profoundly affect catalytic performance. Here, we describe a synthetic methodology that achieves these goals. In this strategy, weak interface interactions evenly deposit presynthesized organic-capped metal nanoparticles on oxide supports. The homogeneous dispersion of nanoparticles on oxides is then locked in place, without aggregation, through careful calcination. The approach takes advantage of recent advances in the synthesis of metal and oxide nanomaterials and helps to bring together these two classes of materials for catalysis applications. An important feature is that the strategy allows metal nanoparticles to be well dispersed on a variety of oxides with few restrictions on their physical and chemical properties. Following this synthetic procedure, we have successfully developed efficient gold catalysts for green chemistry processes, such as the production of ethyl acetate from the selective oxidation of ethanol by oxygen at 100 degrees C.  相似文献   

11.
Surfactant-free nonaqueous synthesis of metal oxide nanostructures   总被引:1,自引:0,他引:1  
Surfactant-free nonaqueous (and/or nonhydrolytic) sol-gel routes constitute one of the most versatile and powerful synthesis methodologies for nanocrystalline metal oxides with high compositional homogeneity and purity. Although the synthesis protocols are particularly simple, involving only metal oxide precursors and common organic solvents, the obtained uniform nanocrystals exhibit an immense variety of sizes and shapes. The small number of reactants in these routes enables the study of the chemical mechanisms involved in metal oxide formation. Nonhydrolytic routes to inorganic nanomaterials that used surfactants as size- and shape-controlling agents have been discussed recently. This Minireview supplements this topic by discussing surfactant-free processes, which have become a valuable alternative to surfactant-assisted as well as to traditional aqueous sol-gel chemistry routes.  相似文献   

12.
合金纳米团簇作为一类新兴的多功能纳米材料已被广泛用于催化、光学传感以及生物医学成像等研究领域,而纳米团簇的可控合成和结构特征是调节纳米团簇性质并对其进一步利用的基础。尽管当前有关金属纳米团簇可控合成和结构特征的研究主要集中在单金属纳米团簇中,但有关合金纳米团簇原子精度的可控合成也取得了显著的进展。本文综述了配体保护的合金金属纳米团簇原子精度可控合成策略,包括一步合成法、金属交换、配体交换、化学刻蚀、簇间反应、原位两相配体交换以及最新的表面模体交换反应,并对相关合成策略的优缺点进行了详细的讨论和阐述。  相似文献   

13.
Transition metal–mercury complexes were among the first compounds of study for the concept of direct metal–metal bonding which was established more than three decades ago. Since then, a large number of such systems have been synthesized and studied. The fact that mercury is readily attached to a large variety of main group or transition metals has stimulated its use as a general building block in the systematic synthesis of mixed-metal clusters. The past decade has witnessed a rapid expansion of bimetallic cluster chemistry in which species containing mercury have played a prominent role, and which has led to the discovery of many unprecedented cluster structures and reactions. In particular, the ability of mercury to form multicenter metal–metal bonds with polynuclear cluster fragments has substantially extended its coordination chemistry which was thus far dominated by simple linear structural arrangements. Although certain structural motifs are found to be common to many of the transition metal–mercury clusters investigated to date and thus enable a relatively systematic synthetic approach, the multitude of surprising discoveries has kept the interest in the chemistry of the element itself alive. The recent discovery of the redox and photochemical reactivity of some of these systems has opened up an exciting and promising area of cluster research. Its significance for the synthetic methodology lies in the fact that the increasing redox activity of molecular carbonyl clusters on going to higher nuclearities appears to set a limit on the size of metal frameworks attainable by the standard preparative methods. On the other hand, their potential use as photochromes or redox mediaters in coupled electron-transfer reactions provides an additional stimulus for future studies in this field.  相似文献   

14.
As synthetic nanocatalysis strives to create and apply well-defined catalytic centers containing as few as a handful of active metal atoms, it becomes particularly important to understand the structures, compositions, and reactivity of small metal clusters as a function of size and chemical environment. As a part of our effort to better understand the oxidation chemistry of Pt clusters, we present here a comprehensive set of density functional theory simulations combined with thermodynamic modeling that allow us to map out the T-p(O)2 phase diagrams and predict the oxygen affinity of Pt(x)O(y) clusters, x = 1-3. We find that the Pt clusters have a much stronger tendency to form oxides than does the bulk metal, that these oxides persist over a wide range of oxygen chemical potentials, and that the most stable cluster stoichiometry varies with size and may differ from the stoichiometry of the stable bulk oxide in the same environment. Further, the facility with which the clusters are reduced depends both on size and on composition. These models provide a systematic framework for understanding the compositions and energies of redox reactions of discrete metal clusters of interest in supported and gas-phase nanocatalysis.  相似文献   

15.
The synthesis of 1,2,4-oxadiazole-4-oxides on polystyrenic solid phase docked at the position 3 of the heterocyclic ring has been performed through the cycloaddition of stable supported nitrile oxides to amidoximes. The photochemical cycloreversion of these heterocycles afforded the free nitrosocarbonyl intermediates that were trapped by suitable dienes or enes. The method is proposed as a clean and environmental friendly approach to the fleeting nitrosocarbonyl intermediates, which afford valuable adducts for various synthetic applications. The isomeric heterocycles docked at the position 5 of the ring have also been obtained by cycloaddition of nitrile oxides to supported amidoximes. Their photolysis afforded resin-bound nitrosocarbonyls that were trapped with dienes affording valuable supported adducts suitable for further elaboration on solid-phase chemistry.  相似文献   

16.
There is increasing interest in recent years in the structural chemistry and properties of layered metal oxides possessing the K2NiF4 or related structures. Many new oxides of this structure exhibiting novel properties are being reported from time to time in the literature. The crystal chemistry of the oxides of the general formula A2BO4 with particular reference to the stability of the K2NiF4 structure and the relations between the different structures exhibited by this family of oxides is discussed. Non-stoichiometry in these oxides is another aspect of interest discussed in the article. While K2NiF4 itself is a well-known two-dimensional antiferromagnet, oxides of this structure with a variety of magnetic properties are examined in some detail. Besides the ternary A2BO4 oxides, the structure and magnetic properties of complex oxides, where the A or/and the B ions are partly substituted by other cations, is discussed. Some of the problems related to this family of oxides that are worth investigating are indicated. Much of the discussion in this article would have relevance in understanding the structure and properties of layered materials.  相似文献   

17.
Metallacyclopentadienes have attracted much attention as building blocks for synthetic chemistry as well as key intermediates in many metal‐mediated or metal‐catalyzed reactions. However, metallacyclopentadienes of the alkaline‐earth metals have not been reported, to say nothing of their structures, reaction chemistry, and synthetic applications. In this work, the first series of magnesiacyclopentadienes, spiro‐dilithio magnesiacyclopentadienes, and dimagnesiabutadiene were synthesized from 1,4‐dilithio 1,3‐butadienes. Single‐crystal X‐ray structural analysis of these magnesiacycles revealed unique structural characteristics and bonding modes. Their reaction chemistry and synthetic application were preliminarily studied and efficient access to amino cyclopentadienes was established through their reaction with thioformamides. Experimental and DFT calculations demonstrated that these magnesiacyclopentadienes could be regarded as bis(Grignard) reagents wherein the two Mg C(sp2) bonds have a synergetic effect when reacting with substrates.  相似文献   

18.
The organometallic chemistry of alkali and alkaline-earth metals has been marred by synthetic setbacks because of their high reactivity. Advances in their synthesis and a better understanding of the stabilization effects of ligands and coligands have resulted in the revolution of s-block organometallics. Among those, benzyl-based derivatives have played a key role in developing this chemistry because factors such as the ligand size, charge delocalization, and introduction of electronic parameters along with metal effects can be analyzed. This article will focus on s-block benzylates and di- and triphenylmethanide derivatives with specific emphasis on the factors that stabilize the highly reactive metal species.  相似文献   

19.
Metallacyclopentadienes have attracted much attention as building blocks for synthetic chemistry as well as key intermediates in many metal‐mediated or metal‐catalyzed reactions. However, metallacyclopentadienes of the alkaline‐earth metals have not been reported, to say nothing of their structures, reaction chemistry, and synthetic applications. In this work, the first series of magnesiacyclopentadienes, spiro‐dilithio magnesiacyclopentadienes, and dimagnesiabutadiene were synthesized from 1,4‐dilithio 1,3‐butadienes. Single‐crystal X‐ray structural analysis of these magnesiacycles revealed unique structural characteristics and bonding modes. Their reaction chemistry and synthetic application were preliminarily studied and efficient access to amino cyclopentadienes was established through their reaction with thioformamides. Experimental and DFT calculations demonstrated that these magnesiacyclopentadienes could be regarded as bis(Grignard) reagents wherein the two Mg? C(sp2) bonds have a synergetic effect when reacting with substrates.  相似文献   

20.
我国金属氢化物化学研究   总被引:6,自引:0,他引:6  
综述了我国金属氢化物化学的发展。我国是从50年代中期开始研究离子型金属氢化物的合成、性能和应用的,发展了一些合成方法,获得了多项中国专利。储氢合金的化学研究是70年代中期开始的。在储氢合金的化学合成、吸放氢热力学与动力学、储氢合金氢化催化和电化学方面都有较深入的研究,特别是储氢电极合金电化学及其在Ni/MH可逆电池中的应用研究,在国家863计划强有力的支持下,某些方面进入了国际先进行列。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号